
RING LABORATORY SERIES SEL-89-002

MPLEMENTATION OF A
DUCTION ADA PROJECT:

SEPTEMBER !989

Uncl as

027700o

I I

_. _ I--

i
..... • _ • mD

7_

-- _ _ : _x----

m

t

..... =

.,,.,j

L

w

SOFTWARE ENGINEERING LABORATORY SERIES SEL-89-002

IMPLEMENTATION OF A
PRODUCTION ADA PROJECT:

THE GRODY STUDY

SEPTEMBER 1989

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

J

i

u

mum

N_

i

g

i

m

J

qil

(in

i

z

Og

W

m

w

|

i

m

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space

Administration/Goddard Space Flight Center (NASA/GSFC) and

created for the purpose of investigating the effectiveness

of software engineering technologies when applied to the

development of applications software. The SEL was created

in 1977 and has three primary organizational members:

NASA/GSFC, Systems Development Branch

The University of Maryland, Computer Sciences Department

Computer Sciences Corporation, Systems Development

Operation

The goals of the SEL are (i) to understand the software de-

velopment process in the GSFC environment; (2) to measure the

effect of various methodologies, tools, and models on this

process; and (3) to identify and then to apply successful

development practices. The activities, findings, andrecom-

mendations of the SEL are recorded in the Software Engineer-

ing Laboratory Series, a continuing series of reports that

includes this document.

The major contributors to this document are

Sara Godfrey (GSFC)

Carolyn Brophy (University of Maryland)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

5399
iii

PRECEDING PAGE BLANK NOT FILMED

in

amp

l

all

m

U _

m

u

l

i
Im

m

I

I

imf

ABSTRACT

The use of the Ada language and design methodologies that

encourage full use of its Capabilities have a strong impact

on all phases of the software development project life cy-

cle. At the National Aeronautics and Space Administration/

Goddard Space Flight Center (NASA/GSFC), the Software

Engineering Laboratory (SEL) conducted an experiment in par-

allel development of two flight dynamics systems in FORTRAN

and Ada. This document describes the differences observed

during the implementation, unit testing, and integration

phases of the two projects and outlxnes the lessons learned

during the implementation phase of the Ada development. _ :

Included are recommendations for future Ada development

projects.

w

w

5399
V

PRECEDING PAGE BLANK NOT FILMED

m

m

ip

_m

J

i
I

!

mp

l

Ipl

in

_!P- -

F_u

n

up

m

J

mm

w

\

TABLE OF CONTENTS

Executive Summary E-I

Section 1 - Introduction I-i

I.I Background i-i

1.2 Objectives i-i

1.2.1 Objectives of Document i-i

1.2.2 Objectives of GRODY Versus GROSS 1-2

1.3 Project Descriptions

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1-4

GROSS and GRODY 1-4

FDAS 1-5

Simulator Environment/Life Cycle 1-8

Staffing 1-13

Timelines 1-15

1.4 Approach 1-15

1.4.1 Information Collection 1-15

1.4.2 Types of Data Collected and Used 1-21

Section 2 - Implementation Issues 2-1

2.1 Introduction 2-1

2.2 The Ada Approach 2-1

2.2.1 Coding Process 2-1

2.2.2 Design Issues 2-3

2.2.3 Tools 2-7

2.2.4 Team Considerations 2-10

2.3 Comparison of Ada Versus FORTRAN 2-11

2.3.1

2.3.2

2.3.3

Ada-Specific Features 2-11

Team Communication 2-19

FDAS Differences • 2-21

2.4 Recommendations 2-22

Section 3 - Unit Testing, Integration, _nd Integra-

tion Testing Issues 3-1

3.1 Introduction 3-1

3.2 The Ada Approach 3-1

Process 3-1

Tools and Library Structure 3-7

5399

PRECEDING PAGE BLANK NOT FILMED

vii

INTENTIONAELYBLANK

TABLE OF CONTENTS (Cont'd)

Section 3 (Cont'd)

3.3 Comparison of Ada Versus FORTRAN

3.3.1
3.3.2

3.3.3

3.3.4

3.3.5

Ada-Specific Features

Usefulness and Importance of Code

Reading
Unit Testing and Integrationl

System Growth

Errors

3.4 Recommendations • •

Section 4 - Manaaement Issues

4.1

4.2

Introduction

The Ada Approach

4.2.1

4.2.2

4.2.3

4.2.4

3-12

3-12

3-15

3-17

3-18

3-19

3-22

4-1

4-1

4-1

4.3

Accounting Methods for Recording Prog-

ress __ 4-1
TransitiOn From Design to Implementa-

tion_ . . _ . 4-3

Staffing Considerations 4-6

Assessment of Original Ada Project

Estimates 4-9

Comparison of Ada Versus FORTRAN 4-12

Growth History 4-12

Change History 4-14

Size 4-14

Effort 4-20

Productivity/Cost 4-26

Schedule 4-28

Error/Change Statistics 4-29

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.4 Recommendations 4-49

Section 5 - Summary and Recommendations 5-1

5.1 Design Observations and Recommendations 5-1

5.2 Implementation Observations and Recommendations. . 5-2

5.3 Unit Testing and Integration Observations and

Recommendations 5-3

5.4 Management Observations and Recommendations 5-4

viii

5399

m

I

u

I

W

_u

n

B

!

m

n

-i

z
i
i

J

q

_7

v

o .

v

.£::::::::

Glossary

References

Standard

5399

TABLE OF

Biblioqraphy of SEL

CONTENTS (Cont'd)

Literature

ix

Figure

i-i

1-2

1-3

1-4

1-5

1-6

3-1

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4 -16

4-17

4-18

4-19

4-20

4-21

4-22

5399

LIST OF ILLUSTRATIONS

Ada Experiment Organization 1-6

A Dynamics Simulator _ 1-9
Development Life Cycle Timelines 1-16

Information Collection 1-17

Change Report Form 1-19
Change Report Form iAda Project Additional

Information) 1-20

Ada Library Structure for GRODY 3-9

GRODY Implementation Status Report 4-4

GRODY Implementation Status Summary 4-5

Initial Project Estimates Versus Actual

Figures 4-10

Growth in Source Code 4-13

Growth in Changes to Source Code 4-15

Growth in Changes Normalized by Number of

Components 4-16
Growth in Changes Normalized by Source

Lines of Code 4-17

GRODY/GROSS Change Type--Implementation 4-32

GRODY/GROSS Change Type--Test 4-33

GROSS/GRODY Change Type--Total Project 4-34

GRODY/GROSS Error Source--Implementation . . . 4-36

GRODY/GROSS Error Source--Test _ 4-37

GRODY/GROSS Error Source--Total Project 4-38

GRODY/GROSS Error Class--Implementation• 4-39

GRODY/GROSS Error Class--Test 4-40

GRODY/GROSS Error Class--Total Project 4-41

GRODY/GROSS Effort To Isolate (Errors

Only)--Implementation 4-43
GRDDY/GROSS Effort To Isolate (Errors

Only) Test 4-44

GRODY/GROSS Effort To Isolate (Errors

Only)--Total Project 4-45

GRODY/GROSS Effort To Complete (Errors

Only)-'Implementation 4-46

GRODY/GROSS Effort To Complete (Errors

Only) Test 4-47---- , • • • • • • • • • • • • • • • •

GRODY/GROSS Effort To Complete (Errors

Only)--Total Project 4-48

X

q

Im

U

n

i

m

p-

u

m

n

LIST OF TABLES

Table

i-I

2-1

2-2

4-1

4-2

4-3

4-4

4-5

4-6

4-7

Team Profiles 1-14

Subjective Assessment of Ada Features 2-15

Nesting Versus Library Units 2-20

Project Size Comparisons. 4-18

Project Effort Comparisons by Phase Dates. . 4-21
Phase Dates 4-22

Project Effort Comparisons by Activity,

Excluding Hours Recorded as "Other". 4-23

Project Effort Comparisons by Activity,

Including Hours Recorded as "Other". 4-24

Productivity Comparisons 4-27

Comparison of Errors and Changes in FORTRAN

and Ada During Implementation and Testing. 4-30

w
5399

xi

V

(IP

i

tP

u

l

Z

w

m

v

w

EXECUTIVE SUMMARY

During the past few years, a study has been conducted to

determine the applicability of Ada for software development

in the flight dynamics environment at the National Aeronau-

tics and Space Administration/Goddard Space Flight Center

(NASA/GSFC) in Greenbelt, Maryland. The primary objectives

of this study are to determine the cost-effectiveness and

feasibility of using Ada and to assess the effect of Ada on

the flight dynamics environment. The study consists of par-

allel efforts to develop the Gamma Ray Observatory Dynamics

Simulator software, with one team of developers using

FORTRAN and another team using Ada. A third team collects

and assesses data from the two development efforts. The

study is a joint project with participants from NASA/GSFC,

Computer Sciences Corporation (CSC), and the University of

Maryland.

This document concentrates on the implementation phase of

the development, including coding, unit testing, and inte-

gration, during which the following conclusions were reached

concerning the use of Ada as a development language for

flight dynamics applications:

• The proper use of Ada's strong typing requires some

training. An abstract type analysis should be in-

corporated into the design process to help control

the number of types used during implementation.

• Ada's tasking feature was difficult to implement

and test. It is recommended that the use of task-

ing be restricted to applications that really re-

quire its use.

• The excessive use of nesting in Ada increases the

amount of compilation necessary during implementa-

tion and complicates unit testing.

5399

E-I

• New programming skills are required to realize the

potential benefits of some Ada features such as

tasking, exception handling, and strong typing.

Training alone does not seem to provide these

skills and some on-the-job experience is necessary.

• Ada tools such as the compiler and the debugger

were found to be quite useful, but are still imma-

ture.

• It required about two-and-one-half times as much

Ada code to produce the functionality provided by

FORTRAN code.

• The percentage of effort expended during each

life-cycle phase of the Ada development was not

significantly different from that expended during

the FORTRAN development.•

• The error rates and the change rates were similar

for the Ada and FORTRAN developments. A higher

percentage of errors was discovered in the Ada

project during the implementation phase than in the

FORTRAN project.

Further study is continuing to determine the validity of

these conclusions with other Ada projects.

5399

E-2

w

m

m
mm

m

=

i

m
D

J

g

m

J

m

m

__ i

am ,

mm

!

SECTION 1 - INTRODUCTION

i.i BACKGROUND

This document is the third in a planned series describing

various aspects of developing a dynamics simulator to be

used as part of the ground support system for the Gamma Ray

Observatory (GRO) satellite. This project, the GRO Dynamics

Simulator in Ada (GRODY), is significant because a corre-

sponding version of this simulator (GROSS) has been devel-

oped in FORTRAN. Analysis of the two projects will provide

insight into the implications of developing flight dynamics

software in Ada rather than FORTRAN--the usual development

language in the past. This document will concentrate on the

experiences of the GRODY team during implementation, unit

testing, and integration testing. In addition, experience

during the implementation of another Ada project, Flight

Dynamics Analysis System (FDAS), will be included for com-

parison.

1.2 OBJECTIVES

1.2.1 OBJECTIVES OF DOCUMENT

There has been considerable interest in the potential of Ada

and its associated methodologies since their introduction.

The Ada language design supports such commonly accepted,

highly regarded software engineering practices as informa-

tion hiding, abstraction, modularity, and localization. It

has been hoped that these design features would lead to

great improvements in many aspects of software development

when Ada is used. One area where improvement has been

needed is in the size and overall complexity of the language

(Reference i).

Among the claims for Ada's potential are higher productiv-

ity, easier maintainability, generation of more reusable

5399

i-i

¢

software, and more reliability of software. Many of these

claims have been based on subjective information, since the

amount of reported quantitative data from actual projects is

quite small. There have been some reports of significant

productivity gains when Ada has been used (References 2

and 3).

One of the objectives of this document will be to examine

these claims for Ada's potential in the light of two

production-type systems developed in Ada--GRODY and FDAS.

Much quantitative data has been collected during these proj-

ects to gain insight into some of the questions that arise

when considering moving forward into an Ada software devel-

opment environment. For instance:

• How does Ada measure up to other languages in prod-

uctivity, reliability, reusability, efficiency, and

maintainability?

• How does an existing software development environ-

ment make the transition into an Ada software de-

velopment environment?

• Is Ada mature enough to satisfy production require-

ments? Are production-quality compilers and sup-

porting development tools available?

• What lessons have been learned from these early

experiences in Ada?

GRODY, a major Ada development effort that has recently been

completed, will be analyzed to gain some of this insight.

Additional experiences from FDAS, also developed in Ada,

will be included to provide a wider experience base.

1.2.2 OBJECTIVES OF GRODY VERSUS GROSS

The overall goal of the Ada GRODY/FORTRAN GROSS software de-

velopment project is to gain insight into the applicability

1-2

5399

v

J

mm

mm

g

__ =

m

m

_m
hl
m

J

M
z

m

R

m

%=.

v

m

i

iiiii_i!ii

of the Ada development methodology and language in the NASA

software environment. Several objectives have been estab-

lished as mechanisms for attaining this goal (Reference 4).

The primary ones are to determine the cost-effectiveness and

feasibility of using Ada to develop flight dynamics software

and to assess the effect of Ada on the flight dynamics en-

vironment. Related objectives are to determine whether

present methodologies in use within the flight dynamics en-

vironment are suitable and to investigate other methodol-

ogies related to the use of Ada. For example, is the

standard development life cycle (see Section 1.3.3) used on

the FORTRAN development equally suitable for an Ada develop-

ment?

Because reusability is an important goal for cost-effective

software development, this experiment will also try to de-

velop approaches for maximum reusability when Ada is being

used for implementation. A major portion of the software

developed in the flight dynamics environment is reused; be-

cause Ada is designed to facilitate reusability, the methods

developed should maximize this feature.

Other factors being assessed throughout the GRODY project

are the differences in reliability and maintainability be-

tween an implementation in FORTRAN and one in Ada. Obvi-

ously, a system that is more reliable--that is, one that has

fewer errors per i00,000 source lines of code (SLOC)--will

cost less to maintain. 1 Similarly, an implementation that

is easier to correct and enhance will be less costly to

maintain. This is of particular importance since the annual

cost of maintenance usually ranges from I0 to 35 percent of

the original development cost in staff hours'(Reference 5).

ISLOC refers to any 80-byte record of code, including comments,

blanks, declarations, and executable lines.

5399

1-3

Looking to the future, Ada has been chosen as the implemen-
tation language for the Space Station Freedom project, which

will be an extremely large, complex, long-term project. In
order to plan effectively for the use of Ada on projects

such as the Space Station, a good set of software measures

needs to be developed. For instance, how can we make size

estimates for Ada implementations? What is the expected
productivity when Ada is used for implementation of a sci-

entific application? GRODYcan provide much useful informa-
tion in these areas.

Portability is another area of interest for the longer-term

projects. The rehosting of software to a new computer sys-

tem" is a likely occurrence with a long-term project, and a

more portable implementation would certainly reduce rehost-
ing costs. Does an Ada implementation provide more port-

ability? Do the methods of implementation influence the

portability of the final product?

1.3 PROJECT DESCRIPTIONS

1.3.1 GROSS AND GRODY

Both the GROSS and the GRODY projects are developing dynam-

ics simulators for the GRO mission. GROSS has been devel-

oped in FORTRAN using the standard methodology in the flight

dynamics environment (References 5 and 6) and is considered

the operational software that will actually be used for GRO

mission support. GRODY is developing a functionally identi-

cal software system using modified design techniques (Refer-

ences 4 and 7) and the Ada development language. (The

portion of GROSS that is not included in GRODY is to be in-

tegrated into a real-time piece of software being developed

by another group for simulation purposes.) Both the GROSS

and GRODY development teams consist of members from NASA/

GSFC and CSC. A study team is composed of members from

NASA/GSFC, CSC, and the University of Maryland and has been

V

I

J

mm

==

m

g

w

m

W

m

5399

1-4

m

im

m

w

m

=

collecting data on both projects throughout their develop-

ment. Figure I-i shows the organization of the two develop-

ment projects and the study.

Work on both dynamics simulators began in January 1985. The

FORTRAN team began with a typical development cycle, while

the Ada team began with a training phase. Acceptance test-

ing of the FORTRAN dynamics simulator was completed by June

1987. The Ada dynamics simulator began system testing in

the fall of 1987 and completed system testing in June 1988.

Formal acceptance testing was not conducted, but acceptance

tests were run on the Ada system as part of the training

received by another task preparing to develop another Ada

dynamics simulator.

The FORTRAN development effort was carried out on a Digital

Equipment Corporation (DEC) VAX-II/780; the Ada development

was done on a DEC VAX-8600. The completed FORTRAN project

is approximately 45,000 SLOC; the Ada project is approxi-

mately 128,000 SLOC.

1.3.2 FDAS

FDAS is a software development tool written in Ada and de-

signed to provide an integrated support framework for flight

dynamics research. FDAS supports research in the areas of

orbit and attitude determination and control as well as mis-

sion planning and analysis. Research activities under FDAS

will include the development of new models and algorithms

that will be substituted for existing software or the recon-

figuration of existing software to solve new problems.

Basically, it provides a simplified, standardized approach

to software modification by allowing the user to automate

the building of software from available libraries of appli-

cations software. The software modules contained in the

libraries can be thought of as pieces of a puzzle: just as

different pieces of the same shape could be interchanged

1-5

5399

w

v

m

0

tq

0

d.J

_u
I,I

I

J

m

w

g

g

m

W

z i
i i

l

W

5399

1-6 w

m

m
m
l

m

J

j ._

L

i ii__

=

to show different pictures, so modules that perform the same

function could be interchanged to build a new piece of soft-

ware.

FDAS has a long development history beginning with a re-

search study and the building of a prototype to help estab-

lish the validity of the FDAS concept and to clarify the

requirements for such a concept. This prototype was devel-

oped in FORTRAN on the DEC VAX-II/780 and was completed in

December 1983. A period of prototype evaluation and re-

quirements definition followed, with the development of FDAS

beginning in January 1985. The decision to implement in Ada

was not made until well into the design phase, even though

FDAS was being designed to take full advantage of Ada. The

implementation has progressed in a series of builds with

increasing levels of capabilities. Build 3 has recently

been completed and is currently under evaluation. The pres-

ent capabilities allow a user to substitute "puzzle pieces"

that are already in object module form under FDAS control.

The current version of FDAS has also been developed on the

DEC VAX-II/780 and is approximately 30,000 SLOC. The pro-

gram has been chosen by the Software Engineering Institute

of Carnegie Mellon University as an educational vehicle to

aid in teaching software engineering practices and as a

basis for experiments on maintenance, enhancement, configu-

ration management, and testing. Copies of FDAS are avail-

able through the NASA Computer Software Management and

Information Center (COSMIC).

Whiie this document does not intend to provide extensive

information on the implementation of FDAS, some experiences

are included here as a basis for comparison with experiences

during GRODY implementation. The types of application prob-

lems addressed by GRODY and FDAS are radically different

since FDAS could be described as a large executive or a

5399

1-7

J

mini-operating system to manipulate other software, while

GRODY is a "number cruncher"--that is, a program requiring

an extremely large number of mathematical calculations.

Thus, it is interesting to see how (or whether) the applica-

tion type affected such considerations as the approach or

methods used during implementation and the success of these

methods.

1.3.3 SIMULATOR ENVIRONMENT/LIFE CYCLE

A general descriptio 9 of a dynamics simulator is included

here to acquaint the reader with the type of implementation

problem that confronted the GROSS and GRODY teams. The pur-

pose of a dynamics simulator is to test and evaluate the

onboard attitude control logic under conditions that simu-

late the expected inflight environment as closely as pos-

sible. The simulator can be considered a control system

problem, beginning with an onboard computer (OBC) model that

uses sensor data to compute an estimated attitude. Control

laws are then modeled to generate commands to the attitude

hardware (actuators) to reduce the attitude error. A truth

model portion of the simulator simulates the response of the

attitude hardware and generates a true attitude for the

spacecraft. Sensor data corresponding to the true attitude

are produced by the truth model and sent back to the OBC

model (Figure 1-2).

The standard software development life cycle used in the

flight dynamics environment is described in detail in Refer-

ence 6. A brief description of the phases of this life cy-

cle are included here to acquaint the reade_ with the

activities normally performed during each phase. Later in

this document, the suitability of this life cycle for the

Ada development will be discussed.

5399

1-8

v

U

g

n

g

w

mm

W

W

g

qm

m

m

::7

I

_Z

J
ATTITUDE, v I

GULARVELOCITY

SPACECRAFT
MECHANICS

TTORQUES,

GULARMOMEN/1JM

Figure i-2.

SENSORS

DATA

OBC MODEL

,Ill

ACTUATORS]_"

COMMANDS

A Dynamics Simulator

m

5399

1-9

The standard life cycle can be divided into the following

seven sequential phases:

i. Requirements analysis--During this phase, the de-

veloper analyses a document that contains the functional

specifications and requirements to assess the completeness

and feasibility of the requirements and to make an initial

estimate of the required resources. The results of this

analysis are summarized in a requirements analysis report.

2. Preliminary design--In this phase, the design proc-

ess is begun when the requirements are organized into func-

tional capabilities and distributed into subsystems.

3. Detailed design--In this phase, the design that was

outlined during the preliminary design phase is expanded to

describe all aspects of the system.

4. ImPlementation--This phase consists of coding new

modules from the design specifications, revising old code to

meet new requirements, and unit testing to ensure that each

module functions properly.

5. System testing--During this phase, the completely

integrated system produced during implementation is tested

according to a test plan (also generated during the imple-

mentation phase) to verify that all the required system ca-

pabilities function properly.

6. Acceptance testing--An independent team tests the

system to ensure that it meets all requirements.

7. Maintenance and operation--At this point, the soft-

ware becomes the responsibility of a maintenance and opera-

tions group that implements any further enhancements and any

error corrections that might be necessary.

Implementation activities generally begin immediately after

the critical design review (CDR), at the end of the detailed

1-10

5399

m

W

m

m
mm

mm

l

imp

mm

W

i

mP

m

M

I

J

m

z

m

7

W

--=

design phase, unless serious problems surfaced during the

review. Usually, the implementation is developed in stages

or builds according to a plan for development that was pre-

pared during the detailed design phase. Individual devel-

opers code and test the modules identified as belonging to a

particular build. (A module is defined as a portion of a

subsystem or system that performs certain designated func-

tions.) Once these modules are unit tested (whether they

are entirely new, reusable, or modified reusable), they are

placed in a project-controlled library where the process of

integrating the modules for a particular build begins. At

this point, the source code for each module is placed under

strict configuration control and any further changes to the

module must be documented and approved by the development

team leader before the changes can be incorporated into the

controlled library.

When all the modules belonging to a particular build are

contained in the controlled library, a series of integration

tests is executed on the completed build. These integration

tests are generally developed early in the implementation

phases and are designed to test the functionality of the

build. Meanwhile, developers not involved in the integra-

tion testing will continue to code and unit test modules

belonging to the next build. This procedure continues until

all the modules are completed and the system is ready for

system testing.

A number of implementation methodologies are considered

standard within the flight dynamics environment. These in-

clude the following:

I. Coding standards and structured code--Implementers

should use only basic structured constructs which are speci-

fied in a module's program design language (PDL). Standards

of coding are specified for each project and should be

5399

i-II

enforced through quality assurance procedures. Principles

of structured programming for FORTRAN implementations are

described in Reference 8. For Ada implementations, coding

standards and a guide to the use of Ada's constructs are

included in the Ada Style Guide (Reference 9).

2. Code reading--As an implementer finishes coding a

routine and successfully compiles it, another member of the

development team reviews or "reads" the code to verify that

it performs the function specified in the design. Many com-

mon coding errors are discovered during the code reading,

before any testing has occurred.

3. Top-down implementation--Each system or subsystem

build is implemented in a top-down fashion following the

hierarchical structure, so that the higher-level controlling

modules that are pictured at the top of the baseline or ob-

jectdiagram are implemented first. Implementation con-

tinues downward to the lower-level controlled modules.

Modules that are not yet coded exist in the subsystem as

stubs, or fully executable modules that acknowledge their

execution only by writing out a message and then returning

to the calling module.

4. Formal test plans--As the growing subsystem evolves

in the controlled library, integration testing begins. When

the full build capability is contained in the controlled

library, this integration testing follows a formal test plan

that specifies the functional capabilities to be tested and

outlines the criteria for determining the success of the

tests. Test plans for each build or release typically are

developed early in that build or release. During the final

release of a system, a system test plan is developed to test

the complete end-to-end capabilities of the system.

5399

1-12

g

m
W

l

U

J

D

m
m _

J

m

w

=

m 5

m

L_

r

Documentation produced during the implementation phase in-

cludes the test plans for both integration testing and sys-

tem testing, a user's guide, and a system description. The

user's guide and system description are usually produced in

draft form during this phase so that the final versions,

produced during acceptance testing, will reflect any changes

that were necessary during the testing phases.

1.3.4 STAFFING

The GROSS and GRODY implementation teams were approximately

the same size with about nine members each. However, the

GRODY team members were more experienced, in general, with

more years of software development experlence and a wider

range of application experience. In addition, they were

familiar with more programming languages--an average of

seven compared to three for the GROSS team. On the other

hand, the GROSS team members were more experienced in the

development of dynamics simulators. About two-thirds of the

GROSS team had previously developed a dynamics simulator,

compared to about two-fifths of the Ada team (Table i-i).

Very few of the GRODY team were experienced in any sort of

real-time programming. This type of experience was consid-

ered useful for implementing and testing Ada tasking.

As the GRODY team members were unfamiliar with the Ada de-

velopment language and its methodologies, they received ex-

tensive training in both. Each member of the Ada team

received 2 months of full-time training spread over a 6-month

period. This training began with a series of sessions dur-

ing which videotapes on Ada specifics were viewed and dis-

cussed. These sessions were supplemented by reading and

coding assignments as well as lectures on Ada methodologies.

The final aspect of the training was the actual design and

implementation of a practice problem consisting of nearly

6,000 SLOC. More information on the Ada training program

can be obtained from Reference I0.

1-13

5399

m

J

g

U

W

Table i-i. Team Profiles

CHARACTERISTIC FORTRAN TEAM

NUMBER OF LANGUAGES

KNOWN (MEDIAN)

TYPES OF APPLICATION
EXPERIENCE (MEDIAN)

YEARS OF SOFTWARE
DEVELOPMENT EXPERIENCE

(MEAN)

TEAM MEMBERS WITH
DYNAMICS SIMULATOR

EXPERIENCE (%)

4.8

66

ADA TEAM

7

8.6

43

i "

m
I

II

II

i

rail

I

J

I

I

5399

1-14
m

i
II

M

I

L _

h •

E_

v

The FDAS implementation team consisted of five members who,

like the GRODY team, were not previously experienced with

Ada. However, the FDAS team did not undergo any sort of

formal Ada training; they learned Ada by reading textbooks

and by on-the-job training. Consultants from the University

of Maryland were available to aid the learning process.

1.3.5 TIMELINES

Figure 1-3 shows the development cycles of both the FORTRAN

and the Ada projects against a time line, to emphasize that

the FORTRAN development was conducted much earlier and on a

much more compressed schedule. It is important to note that

effort levels differ considerably over the life cycles of

the two projects. Effort comparisons will be discussed in

Section 4.

1.4 APPROACH

1.4.1 INFORMATION COLLECTION

The collection of information for this document (see Fig-

ure 1-4) was accomplished by using forms, surveys and inter-

views, observation, and code analysis.

Using forms, data on the GROSS and GRODY projects as well as

FDAS have been collected through all the projects and stored

on a data base by the Software Engineering Laboratory

(SEL). The SEL is a joint effort of NASA/GSFC, CSC, and the

Computer Sciences Department of the University of Maryland.

It has been collecting detailed software development data

through complete project life cycles for the past 10 years.

During this time, the SEL has converged on a standard set of

forms that contain information of general interest. These

forms were used to collect information on all three proj-

ects, but for GRODY and FDAS a modified version of the forms

was used to capture some Ada-specific information not in-

cluded in the original forms. Examples of the forms used to

1-15
5399

V

g

t_
LU
Z
m

LI..i

w

I-- >-
LI.I n-"
-X
Ou_

0 w>

_1 tr-

Z "
LI.I w

D.
0
...i
!11
>
ii!

Z

I--< CI w

IJ_

CO
oo

,M

f_
O0

m 0

>

I

m

i

J

m

D

w

W

I

m
i

5399

1-16

t

L

r

-...-

Q

LU
:E

Q,

-!

cc z

z _.

n

8

n"

LU
U)

n"
IJJ
>
0

0

j.I
U
_)

r-(
r-(
0

0

0

I

5399

1-17

collect error and change data are shown in Figures 1-5 and

1-6.

Using surveys and interviews, the study team on the GRODY

project collected a great quantity of information on the
methods used and their success, the problems encountered

during implementation and testing and their solutions, opin-
ions on tools, and suggestions for improvements that could

be made for future development efforts. Most of this infor-

mation was collected during personal interviews conducted
near the end of the integration phase. In order to supple-

ment the interview information, to clarify some of the data,

and to quantify opposing viewpoints, written surveys were

distributed to team members. Team members from both GRODY

and FDAS were included in this data collection process.

The study team carefully monitored the development progress

in several ways. They attended design reviews given by the

development team and, for GRODY, attended many of the imple-

mentation meetings held every 2 or 3 weeks. The purpose of

these meetings was to discuss project status, to resolve any

problems involving more than one implementation area, to

share knowledge gained by experience, and to coordinate im-

plementation efforts. The development progress was also

monitored by tracking the weekly accounting information on

computer usage and program size.

The completed code of the projects was analyzed by a program

that provides statistics on the detailed characteristics of

the source code. In addition to this automatic analysis,

software developers performed a careful, detailed analysis

of the GRODY code as a learning and training experience. As

a result of this analysis, many observations were made con-

cerning the quality of the GRODY code. These results are

contained in Reference Ii.

W

I

r _

m

Wm

m
J

I

i

W

m

im

W

5399

1-18

I

Project Name:

Programmer Name:

CHANGE REPORT FORM

Current Date:

Approved by:

Section A - Identification

Describe the change: (What, why, how)

Effect: What components (or documents) are
changed? (Include version).

Effort:. What additional components (or documents)
were examined In determining what change was
needed?

Location of developer's source flies

Need for change determined on: !

Change completed (Incorporated Into system): I

m_ dey yw

• (If so,completequestionson
I I reRcse =rde)

I Itr/len I hr/1 dy 1 dyrJ dys =,1 dye

|

Effort In person time to Isolate the change (or error):
Effort In person time to Implement the change (or correction):

i

Section B- All Changes

Type of Change (Check one)

[] Emx correction [] lfmdloNck_tlo_ d debug code

[] Planned qmhancemenl [] Optimization ol tlme/space/aceur=cy

Implemenlation OI mqulmme_b c_ [] Adapt_n to envkomllenl change

v_,o_nt ol¢J=_, m._n=lnamy, I'] _ (_p4_ =1b==_
_ or documefdati_

[] Improvement of u_r re.does

Source of Error
(Check one)

Section C - For Error Corrections Only

Class of Error

(Check most applicable)*

I-Ic=_,
[] Pn._o= ch,,_go

[] _1_ f4z_.lon

[] _:_=mr_ sfruclum
(e.g.. flow of e_r_ Ino_._l)

[] Intort_sce (internal)
(meduV to modub ommu_Nk_)

[] Interface (exllmld)

.] (nloduIM to e=lmln_d commuNcatio_)

Dm (value of structure)

i_i (e.g.,v.ongvuiaUe ueed)
Con_aeon_
(e.g., error in 0vulh oxwnndon)

"If two Im equally applicable, check the
one hlghm, on tt_ lilt

Effects of Change
Y N

[] I"lw-- t_ ¢h=_ or¢=mcuo. toon.no

[] [] Did you look at any other component?

[] r"_ Did you Mvl to be rAlre of i_rametem

p.s=d eq:lldUy or k.ptidt_y (e.g.,

conw, on Idock=) to or tam _hechanged
component?

Characteristics

(Check Y or N for all)

Y N

[] [] _ ,..o_ (e.g.,.omet._=,=w,,,,_. ouq

I.auded)

For Ubrarlan's Use Only

_ml)er:

Date:

Enlered by:

Checked by:

JULY 1987

Figure i-5. Change Report Form

5399
1-19

CHANGE REPORT FORM
Ada Project Additional Information

1. Check which Ada feature(s) was Involved In this change

(Check al that apply)

- [] _ [] _ogramm.mtumandpa_ag_r_

[] subp_rar= O Task_

[] F._lons [] Systel.-dependentfeatures

(e.g.I/0,Ads statements)

Z For=at_ l_/¢Im:

& 0o_ the¢ompbr doctsrn=ntatlonorthelanguage

referencemanualexplainthe leamredeady?

b. WhichofthefoUowingIs morntree? (Checkone)

[] UnderstoodbatumsseparateWybutnotInteractk)n

I-1 Urx_rs=ood_a_,r=, =:=dU r_xapph/¢orrecW

n Cor_used_atum wtthbature inmtotJ_rte.guaoe

¢.Whk_ ofthefoUo_ rmourcu provldedtheInfomtalkm

(Y_)

need@dto comet theecmr?

[] C_B not_

[] _= _.=r=,J

(C_¢k aWthinappaj)

[] Own_

[] _meone nm on tesrn

[] Other

d. Whichtools,if any,aidedInthedetectionar correct_n olthis

mar? (Checkaathatapply)

[] _jrnbollcdebugger

[] l.ang uage-sens.lve edJto;

[] cus

[] Source Code Analyzer

[] P&CAperformance and Coverage
Analyzer)

[] DEC test manager

[] Other,spec.y

3. Provide any other Information about the Interaction of Ada and this change

that you led might aid In evaluating the change and using Ada
c_

mm

'qm

i

Ilw

m

g

Im

W

J

m

g

m

IULY 1988

Figure 1-6. Change Report Form (Ada

Information)

Project Additional

w

I

5399

1-20 W

J

-_._-

1.4.2 TYPES OF DATA COLLECTED AND USED

Several of the above data collection methods resulted in

subjective information, but many of the methods produced

quantitative data. Among the types of quantitative data

collected are the following:

• Effort data by component level, weekly, from each

programmer, manager, and support staff member

• Monthly estimates of size and schedule

• Component characteristics data for each new compo-

nent

• Project characteristics--final size, number of com-

ponents, phase completion dates, etc.

• Change and error information

• Amount of computer time used and number of runs made

• Number of executable versus nonexecutable versus

commentary lines of code

• Number of each type of statement

• Number and types of modules

L_

5399

1-21

W

I

W

II

II

I

I

I

II

w i

i

IP

I

II

UP

W

i

W

II

SECTIQN 2 - IMPLEMENTATION ISSUES

2.1 INTRODUCTION

An object-oriented approach was used during the design phase

of GRODY. The design notation used object diagrams primar-

ily, and PDL was developed for some of the modules during

the design phase. Compilable Ada code was used for some of

this PDL, but most of the PDL was an Ada-like type of pseu-

docode similar to that used in FORTRAN PDL. At the time of

the critical design review for GRODY, many team members felt

that the design was still not complete. Thus, a consider-

able amount of time early in implementation was Spent on

what the team considered design activities. More informa-

tion on the design phase of GRODY can found in Reference 12.

2.2 THE ADA APPROACH

On the surface, it appears that the Ada team's approach to

implementation was not significantly different from that

used by the FORTRAN team. The implementation work was di-

vided into builds, and portions of the work for each build

were divided among the team members. Implementation activi-

ties are described below.

2.2.1 CODING PROCESS

Completion of the PDL involved writing prologs for each mod-

ule. These included information on inputs and eutputs, type

information, and the purpose of the module.

The first build of GRODY was a complete implementation of

the specifications for as many modules as possible in the

system. (It was not possible to include the specifications

for some of the nested modules until the bodies of their

parent modules were included.) This early definition of the

specifications was considered very useful because it defined

all the interfaces very early in implementation. Since the

5399

2-1

specifications are compilable, they were compiled to find

any interface errors.

The initial build of GRODY also included the utilities nec-

essary for GRODY that were not provided by Ada. These util-

ities were implemented in a generic library unit package.

GRODY had a global type package that contained many types

used throughout the system. Although this package was con-

sidered necessary for GRODY's design, it caused many prob-

lems. It was difficult to define the appropriate type for

all variables in the system so early in implementation, but

these types were needed to define the other high-level in-

terfaces. Many were enumeration types containing variable

names, and changes to these were necessary during the course

of implementation. Because this package was used in so many

places, these changes caused considerable recompilation of

large parts of the system.

Most of the developers felt that the original design was

easy to follow and to translate into code. Some developers

preferred to code directly from the design as documented by

the object diagrams rather than to take the time to write

the PDL. Most of the developers felt that they could de-

velop Ada code more quickly than FORTRAN code.

The method of translating the design into Ada was fairly

language-independent and depended more on the individual

programmer. One programmer described his method as a proc-

ess of examining all the inputs listed in the design, such

as input parameters, necessary data bases, and information

to be maintained by the package. Then he examined the func-

tion of the module as stated by the math specifications.

After determining that all the necessary information was

available, he decided on the best method for coding the mod-

ule.

W

J

w

M

J

g

m

J

g

Im

J

g

m

Q

5399

2-2

.ram

L

The _evelopers used an Ada style guide (Reference 9) as a

reference. This style guide was developed by some of the

team to document recommended standards for Ada coding to be

used throughout GSFC. It deals with the formatting of the

Ada code and provides direction on the use of Ada features

in order to promote good programming practices. For exam-

ple, it gives guidelines on the use of such features as com-

puted constants, infix operators, and derived or private

types.

Most of the GRODY development team felt that the style guide

was very useful, though they had some suggestions for its

improvement. For example, according to the style guide,

declarations should be spread out over multiple lines so

that there is one line for the variable name, one for the

type, and one for initialization. The team thought fewer

lines could be used for declarations. Some developers felt

that adapting to the style recommended by the guide required

a period of adjustment, as they were accustomed to the style

of programming used in some Ada textbooks.

One of the style difficulties encountered by the developers

was determining the amount of documentation necessary within

the code. That is, what should be commented and where?

Team members felt that much of the explanation of the Ada

code was obvious due to Ada's readability. The style guide

recommended more commenting than the team felt was necessary.

2.2.2 DESIGN ISSUES

As mentioned in the previous section, it was necessary to

continue some design activities during the early implementa-

tion phase of GRODY development. Some entire functions,

such as the report generator and the plot generator, were

designed after the CDR. Most developers felt _ that the com-

pleted design was fairly comprehensive and easy to follow.

5399

2-3

Most changes in the design after the very early implementa-

tion stage were additions, rather than changes, to the orig-

inal design. Other reasons for design changes include the

following:

• Additions to the system
.

• Poor understanding of some features (for example,

tasking)

• Errors in design

• Improvement of design

• Performance improvements

• Inadequate function of standard package

Certain design problems and deficiencies became obvious dur-

ing implementation. One surprising aspect of the design is

that it produced a highly interconnected system: the mod-

ules were dependent on other code and could not be executed

independently. This made testing more difficult (see Sec-

tion 3). Most developers had expected the object-oriented

design approach to lead automatically to a modular system.

FDAS also developed into a interconnected system using an

object-oriented design methodology. So, it appears that

while object-oriented design is not incompatible with inde-

pendent partitioning of subsystems, it does not automati-

cally lead to it.

One problem with the design that emerged during implementa-

tion was that the functionalities designed into procedures

were not communicated well. During the design process,

functionality was designed as a part of the package and was

not explicit on the procedure level. Prologs that were

written for the Ada code described the purpose of the proce-

dure, but were not specific about the actual algorithms to

be used. FORTRAN prologs usually contain the explicit

U

w

mm

w

g

g

U

J

mR

g

g

Im

i

5399

2-4

mm

mR

r .

w

algorithm descriptions. Thus, there was more confusion

about exactly what a particular piece of code should do.

Many more meetings were necessary to clarify the functions

of various modules.

Another design problem that became obvious during the design

was the representation of tasking in the design. The design

notation showed task dependencies, but was not explicit

about control interactions (i.e., when tasks need to inter-

act and when they do not). Thus, it was not clear to the

developers where "accepts" should be coded or what sort of

action should be taken if an expected rendezvous does not

occur within a specified time interval. It was also hard to

determine when a task should terminate. In some instances,

it was possible for a task to indirectly call itself--that

is, to produce a cycle. As a result, it was difficult to

guarantee that no deadlocks would occur. (See Section 3.3.1

on tasking.)

Tasking was new to the developers and a successful implemen-

tation using the design description was difficult. In the

future, it wouldbe helpful to develop a better way to de-

scribe tasking in the design, including an overall descrip-

tion of task interactions. This is especially important

since the most experienced members of a development team

usually develop the design; those likely to perform imple-

mentation may be much less familiar with the particular de-

tails necessary to implement tasking so that it performs the

function intended by the designers.

Some redesign of GRODY was necessary because features did

not work exactly as expected or because standard Ada pack-

ages did not perform a required function. An example of

this is the standard Ada calendar package. Initially, this

package was implemented, but during integration testing it

was discovered that this package was not producing the

2-5
5399

correct numbers. This was because the resolution on the

clock time was only i0 milliseconds and a higher resolution

was necessary. The team rewrote the package using a private

"long float" type to improve the resolution.

In a few instances, errors were discovered in the original

design while the details of the procedures were being imple-
mented. Some of these design errors were probably due to

the designers' relative unfamiliarity with the use of Ada

and with this type of application. Other design errors were
similar to those that might occur in a FORTRANproject.

Some design changes occurred because the team found a better

way to design a particular function. An example is the re-

design and recoding of the report generator and simulator
results sections of the system. The redesign enabled these

sections to take advantage of the overloading features that

had been coded. In a more time-constrained development,

this type of redesign probably would not have occurred.
Since GRODY's schedule was fairly unrestricted, there was a

tendency to make changes to improve the quality of the sys-
tem. Many improvements were made as the team's experience

increased during implementation.

An example of a design addition is the "debug collector"

package. The purpose of this package is to collect all the

system's debug information into one area. It also provides

an option to allow different amounts of debug information to

be collected. Such additions as this were intended primar-

ily to improve the quality of the system, but were not part

of the basic system requirements. Normally, several levels

of debug output are built into a FORTRAN simulator.

A final set of design changes was made very late in imple-

mentation, during the integration testing phases of the sys-

tem. These changes were necessary to improve overall

runtime performance of the system. For example, the team

5399

2-6

w

J

J

m

w

J

U r

w

mm

J

m

J

m
u

mm

= •

=

_ .

F

discovered that calls to direct-access mixed input/output

(I/O) were taking approximately 0.I second of central proc-

essing unit (CPU) time for every call, and the design re-

quired many calls during each run. (A typical case was

5,000 calls for a 30-second data span.) The design was

changed to buffer information and reduce the number of

calls; this in turn reduced the amount of CPU time necessary

for a run. This I/O problem was further complicated by the

fact that the original design was intended to reflect the

physical operation of the system that it was modeling--in

this case, the OBC. However, this representation did not

always result in the most efficient software design. In one

case, it resulted in the computation and recording of ephem-

eris data four times each computing cycl e , when once would

be sufficient.

In other cases, inefficiencies were discovered in coordina-

ting the screen management and the tasking (see Sec-

tion 3.3.1). The original interaction between the Ada tasks

and the screen management allowed the user interface to get

control of the CPU whenever the computations paused for

I/O. The user interface would then hold the CPU for a full

time-slice even if no requests needed to be processed. This

problem resulted from the method used by the DEC Ada runtime

system to schedule tasks waiting for I/O when the screen

management system was also in use.

2.2.3 TOOLS

The tools used during the implementation included the Ada

Compilation System (ACS), the Ada compiler, and the Baron

Templates. The VAX Configuration Management System (CMS)

was used to provide configuration control of the source

code. The debugger was used extensively during unit testing

and integration and will be discussed in Section 3.2.2.

5399

2-7

The Baron Templates are fill-in-the-blank templates for the

primary Ada constructs, making it easier for the implementer

to code the constructs properly. Those team members who

were not as familiar with Ada found the templates useful,

but the team members who had used Ada on other projects pre-

ferred to use the VAX Digital Standard Editor (EDT).

During implementation, each developer had a sublibrary in

which the newly developed code was placed and unit tested.

As soon as the units for a particular release were unit

tested, integration began, and the source code was placed in

a controlled library under CMS. All changes to this library

were made by one person whowould notify the team of any

changes. For several reasons, the developers using GRODY

were somewhat slow about placing their code in the con-

trolled library. First, once the code is in the controlled

library, a change form must be filled out to change the code

and all changes must be carefully recorded. The developers

tended to keep the code in their own libraries so they could

correct as many errors as possible before a careful account-

ing of errors was necessary. In addition, once the code was

in the configuration library, changes made to other modules

were more likely to force developers to recompile large

amounts of code: the Ada compiler forced a recompilation of

any unit that was not current, even if the source code

change was something as simple as a comment. Since the com-

piler was very slow, this was an annoying problem to the

developers. In general, these large compilations were done

overnight to optimize machine response time during the day-

time, but many times a developer would be unaware that a

change had been made that would affect him, and it would be

necessary for him to recompile before he could proceed.

Some of the developers alleviated this problem by pulling

routines out of the controlled libraries and into their own

W

g

m

z
m
J

m

g

W

W

I

l

B
I

J

m

5399

2-8

m
m

u

w

libraries before changes were made. With their own copy of

the routine, they would not be forced to recompile those

routines when changes were made to the copies in the con-

trolled library. This worked because the Ada compiler would

accept the version of the routine in the developer's library

and no% look for the more recent version in the controlled

library. Some de_elopers used this method often to avoid

some of the problems with unexpected recompilations caused

by other developers' changes. This was a fairly effective

way of delaying recompilation until a more convenient

time--for instance overnight, when lengthy compilations

could be accomplished more easily. This method is not rec-

ommended as a complete solution to the recompilation prob-

lem, because it causes a developer to use versions of

modules that are not completely up to date, but it did pro-

vide the developers with a short-term solution that allowed

them to make better use of their time.

All of the developers commented that extra recompilation was

a problem, especially if it had to be done during the day-

time, because GRODY's priority during the daytime was very

low and recompiles received very little CPU time per elapsed

time.

Another procedure that complicated the library structure and

the configuration control was the fact that there was a sep-

arate library for each release. This meant that corrections

put into one release library must also be placed into the

other release library if they both contained that module.

This was initially intended to save time by allowing para-

llel development, but some of the benefits were lost due to

the overhead of maintaining two release libraries. See Sec-

tion 3.2.2 for more information on library structure.

The teams felt that a tool to provide a graphic representa-

tion of the library structure would be useful. Since Ada

2-9
5399

has a much more complex library structure than FORTRAN, a

thorough understanding of that structure is important. Such
a tool would be very helpful in configuration control.

A language-sensitive editor (LSE) was not available to the

GRODYteam, but many team members felt that one would be
beneficial. One team member had used an LSE during FDAS and

missed it on the GRODYproject. Other team members felt
that an LSE would be useful if it were fast and did not

force the developer to make changes immediately after the
need was discovered.

The team felt that some type of pretty printer would be use-

ful in performing the tedious and time-consuming task of

formatting the code. They also determined that an automatic

stub generator would be helpful, to generate a dummy module

that would satisfy the compiler and linker during testing
without requiring that the actual routine be present. The

team wrote a tool to do this automatic stubbing that will

also create a skeleton for a package body and provide the

appropriate documentary boxes for the names of the bodies
and specifications. This tool also aided in documentation.

2.2.4 TEAM CONSIDERATIONS

During implementation, the work was partitioned out to the

team members according to objects in the design. In gen-
eral, these objects corresponded to packages that gave each

team member a convenient, unified section of the project to

work on. This method worked fairly well and team members

preferred it to being assigned work that had been divided up

by procedures.

As mentioned earlier, many meetings were necessary during

implementation to clarify the actual function of specific

procedures in the design, Close communication was also nec-

essary to keep team members informed of changes in other

portions of the system that would affect them.

2-10

5399

M

m

u

z

u

u

u

J

I

w

D

J

mm

w

w

w

2.3 COMPARISON OF ADAVERSUS FORTRAN

One of the most obvious differences between the Ada and the

FORTRAN projects noted during implementation was the size of

the systems being generated. The Ada language is respon-

sible for some of this code increase, since about one-third

of the code consists of specifications. Ada statements are

longer than FORTRAN statements and Ada variable names are

longer. More blank lines are used in Ada and certain types

of statements, such as declarations, are spread over multi-

ple lines for readability. The usual FORTRAN style does not

spread out similar statements. The team felt that the Ada

code was much more readable than the FORTRAN code. The Ada

code also contained more comments, because features such as

tasking were more complicated and needed more explanation.

Ada also provides more capabilities, such as exception han-

dling, that had to be coded and commented. Basic utilities

that are provided with FORTRAN were not available with Ada

and had to be implemented by the team. Other reasons for

the size difference are described in Section 2.3.1.2 on

"call-throughs" and Section 3.3.4 on size.

2.3.1 ADA-SPECIFIC FEATURES

The team attempted to use all the Ada features that seemed

applicable to the problem. However, they wanted to be con-

servative and not jeopardize the project by relying on a

feature that did not work properly or was too troublesome to

implement. Overall, the team was very successful in their

use of the features, but some features were found to be more

difficult to implement than others.

2.3.1.i Lanquaqe Features

Generics, which were fairly easy to implement, were used in

the utilities package to perform similar types of mathemati-

cal calculations for different types of objects. They were

2-11

5399

found to be quite effective and reduced the amount of code

necessary to perform certain functions• One early version

of the compiler had problems with generics, but these prob-

lems were corrected in a later version.

Another feature that was easy to implement and quite benefi-

cial was the capability of separating the bodies and speci-

fications of procedures and compiling them individually.

This capability was exercised in most cases, and wherever

possible the specifications for the system were developed

before the bodies were coded. (This was not possible for

the nested units, where the body of the calling module must

be coded before the specification of the nested unit•) The

early development of the specifications helped clarify the

interfaces, and the separate compilation of bodies and spec-

ifications reduced the amount of recompilation necessary

when changes were made. The team did not save as much re-

compilation time as was expected, because there were many

changes to the interfaces• These changes resulted from an

inability to form an accurate, detailed, high-level view

early in the implementation. They were also the result of

problems with the types initially chosen for interface pa-

rameters. Another advantage of the separation of specifica-

tions and bodies is that it encouraged parallel code

development. Another team member could easily code the body

of a procedure, using the specification already coded. Par-

allel development is also used for FORTRAN, but there is no

similar method for clearly defining the interfaces in ad-

vance.

The strong typing of Ada was new to most of the GRODY devel-

opers, and most felt it took time to become accustomed to

using it. The tendency was to create too many types. A

type would be created with a strict range for a particular

portion of the application. Then other areas of the appli-

cation would need a similar type, but the original one would

2-12

5399

J

m
I

m
m
i

w

m

w

I

mm

L

mm

m

N

m

_4r

r "

--=

W

W

W

be too restr{ctive. So another type was created, along with

a corresponding set of operations. Some of the difficulty

with this method of typing began to emerge as early as crit-

ical design, when interface problems developed due to typing

differences. The extent of these problems was not fully

recognized until far into implementation.

The GRODY team considered tasking the most difficult feature

to implement and test. First, tasking was a new idea and

some aspects were not clearly understood by the team. This

led to errors in both the design and coding of the tasks.

The original design of GRODY called for two concurrent func-

tions; thus, two tasks initially were designed. One task

was in the user interface and could interrupt the processing

at any point to write status information. The other task

was in the simulator, which Performed computations. The

simulator and the user interface were intended to operate

asynchronously and independently of each other. Either of

these tasks could call the other. One by one, additional

tasks were added in the user interface until there were

eight or nine tasks. Some tasks were added to control var-

ious problems discovered during testing and will be dis-

cussed in Section 3.3.1. Other tasks were added because the

developer viewed them as a good method of implementing a

particular function.

Locally, from the point of view of a particular developer's

section of the project, the additional task may have been a

good idea. However, the problem arose when this new task

had to interact with all the other tasks. Some of the new

tasks could not operate correctly in a concurrent manner and

ultimately had to perform their functions sequentially.

That is, the functions to be performed by some of the new

tasks were more appropriate for sequential processing than

for parallel processing since the output of one function was

required for the next function. The developers found the

5399

2-13

originally designed tasks more difficult to code from the

design than other types of units. The dynamic relationships

of tasking could not be represented in the design, leaving

the developers with questions about termination, rendezvous,

and multiple threads of control.

Information hiding, a software engineering principle that is

emphasized in Ada, was new to some developers with extensive

FORTRAN experience. Two developers commented that they felt

very uncomfortable with information hiding because they

couldn[t see what was going on in other portions of the

code. They felt insecure about the function of private

units and wondered whether they were really doing what was

expected.

Portability is another desirable feature considered when the

Ada language was developed. The team kept portability in

mind when they designed and implemented GRODY, but they

found good reasons for choosing features that were not port-

able. For example, originally the software-simulated, port-

able, floating-point number representation was chosen, but

it was discarded in favor of the hardware-dependent repre-

sentation for efficiency when the software representation

was found to be too slow. Other nonportable features were

used because no equivalent feature was available in Ada.

These features included DEC utilities to interface with the

standard math libraries and the DEC screen management soft-

ware. In order to retain as much portability as possible,

these features remained localized, even though some of them

were fairly large modules.

Table 2-1 shows a subjective assessment of the team's atti-

tudes concerning the various Ada features they used. These

ratings were obtained by compiling the team's opinions when

asked, "How easy was it to implement or use this particular

u

mm

U

I

mm

m

I

J

I

J

I

m

I

J

5399
2-14

mm

feature?" and, "When the feature was successfully implemen-

ted, were you pleased with the results? (Did you find the

advantages of using this feature worth the trouble of imple-

mentation?)".

Table 2-1. Subjective Assessment of Ada Features

w

w

i

ADA FEATURES

Tasking
Generics

Strong typing
Exception handling
Nesting
Separate specs/bodies

IMPLEMENTATION
EASE

+

0
0

+

++

BENEFIT

4-

0

4-+ i_

Ratings represent a subjective assessment based on team
member interviews.

w

w

2.3.1.2 Libr%ry Units and Nestinq

A library unit is defined as the outermost level specifica-

tion in a file for a package or procedure. In general, mul-

tiple library units compose the outermost lexical level of a

program. A task cannot be a library unit. Nesting refers

to the practice of encapsulating package, task, or subpro-

gram specifications inside another package, subprogram, or

task body.

The choice of using nesting or library units during imple-

mentation and the degree to which each is used greatly af-

fects the final product. This choice seems to be an

implementation question, but actually the representation of

the design and the teams' view of that representation may

influence the decision and cause a strong inclination toward

one or the other. For GRODY, the design document showed

dependencies, but did not actually call for a nested ap-

proach. The team felt that the design could have been im-

plemented successfully using either, but it seemed to them

5399

2-15

that nesting was a natural manifestation of the object-

oriented design.

For GRODY, the library units went down about three or four

levels, while nesting went eight to ten levels below that.

During implementation, most team members felt an appropriate
balance had been reached between nesting levels and the num-

ber of library units. One view of GRODYshows that it has

124 packages, of which 55 are library units. One team mem-

ber who had worked on FDAS, which used library units almost

exclusively, felt that heavy use of library units would have

been more appropriate for GRODYalso. In retrospect, most
GRODYteam members felt that nesting had been overdone, and

provided some suggestions on future use of nesting and li-

brary units.

Experience with unit testing seems to indicate that library

units should be used at least down to the subsystem level to

make testing easier (see Sections 3.2.1.1 and 3.2.2). Below
this level, the benefits of nesting sometimes dictate its

use and thus determine the transition point from using li-
brary units to nesting.

An additionai way to determine when the change from library
units to nesting should occur is to examine the degree of

interaction between modules. Modules that interact heavily

should be library units. In GRODY, the Truth Model is a

library unit, as are the four subsystems within the Truth

Model, since these all interac£ heavily with one another.

At the point where the interaction diminishes, it is prefer-
able to switch to the use of nested units. In the example

above, all four Truth Model subsystems that are library

units contain nested components--for example, the sensors

and actuators, which do not interact to the degree that the

high-level modules do.

5399

2-16

l

W

J

I

=_

I

U

U

I

m

J

U

m
i

I

I

L

w

= =

w

i

u

The final important consideration when choosing between

nesting and library units is the issue of future reuse.

Modules that have a high probability of future reuse should

probably be library units. Library units can be reused much

more easily than nested units since they are already sepa-

rate and are not embedded in a larger module that may not be

applicable for the future system. A nested unit embedded in

a module not desired for reuse must be "unnested '° to be re-

used. Experience gained during FDAS has shown that this can

be a very labor-intensive process.

The design of GRODY suggested a highly nested implementation

with many objects within objects. The degree of nesting

during implementation was increased through the use of many

"call-throughs," which are procedures whose only function is

to call another routine. This was faithful tO the design

structure, so that a physical piece of code existed for ev-

ery object in the design. The philosophy behind the use of

the call-throughs was to group appropriate modules together,

and to exploit information hiding. Nesting in general and

caii-throughs in particular help account for some of the

additional SLOC in GRODY when compared to the FORTRAN ver-

sion. It is estimated that of the 128,000 SLOC in GRODY,

about 22,000 (including specifications and bodies) are the

result of call-throughs. In retrospect, the team feels that

some objects in the design should remain "virtual" objects:

that is, they would exist in the design to clarify the logi-

cal structure of the system, but for efficiency they would

be excluded from the implementation. While call-throughs

provide a good way to collect functions into subsystems,

their use should be limited to only two or three levels of

nesting in the future.

Nesting has both good and bad effects on the resulting prod-

uct. The primary advantage of nesting is that it structur-

ally enforces the principle of information hiding, due to

5399

2-17

the Ada visibility rules. With library units, the only way

to avoid violation of information hiding is through disci-

pline. Type declarations can also be located in one place

with nesting.

One disadvantage of nesting is that it increases the amount

of recompilation required when changes are made, since Ada

assumes dependencies between even sibling nested objects or

procedures, whether the dependency is real or not. Thus,

with nested units more parts of the system need to be recom-

piled than with library units. It is also harder to trace

problems back through nested levels than through levels of

library units. There is no easy way to identify who called

a module when it is nested, but that information is provided

by the "with" clauses of library units. When nesting is

used, a debugger becomes essential to see what is happening

at the deeper levels (see Section 3.2.2). Due to the diffi-

culties in debugging the deeper levels with nesting, it is

now believed that the extensive use of nesting instead of

library units will make the maintenance harder. This is

contrary to the team's earlier expectations based on their

experience with a small training project in which nesting

worked well (see Reference I0).

Library units seem to have a lot of advantages. Besides

requiring fewer recompilations when changes are made and

providing easier unit testing, every library unit can be

made visible to any other library unit merely by the use of

the "with" clause. Library units allow smaller components,

smaller files, and smaller compilation units. The resulting

system is expected to be more maintainable, since it is

easier to find the unit desired and since there is no excess

code. Reuse is also easier with library units since the

parts of the system are smaller and each small function of

the system is more likely to be contained in a separate unit

that could be plugged in to another application. Configura-

5399

2-18

w

mm

±

I

J

I

m
U

i

m

I

mm

I

m
m

m

I

m

E

mm

m

u

D

tion control is also easier with library units, since more

pieces are separate; that is, the ratio of changes per piece

is closer to i:I. The major disadvantage seems to be that a

complicated library structure develops, which can lead to

errors by the developers (see Section 3.3.5).

The advantages and disadvantages of nesting versus library

units are summarized in Table 2-2.

2.3.2 TEAM COMMUNICATION

During implementation, much more team communication was nec-

essary for Ada than for FORTRAN. Since Ada was new to the

developers, the usage of the language was often discussed at

these meetings. In addition, developers shared their exper-

iences so that other developers could benefit from better

ways of implementing Ada or avoid pitfalls.

Another topic of discussion during these meetings was the

function of some of the lower-level routines, including lo-

cation of necessary conversions and initializations, since

the design described the functionality on a package level

and the specific function of a procedure was not always

clear;

Communication was also very important during unit testing

and integration because the developer needed to know when-

ever something that he depended upon in the controlled li-

brary had been recompiled so that he could plan to recompile

his dependent code as Ada requires. Since recompilation was

very time consuming, developers preferred to do this neces-

sary recompilation overnight. All of the developers com-

mented that it was very discouraging to try to run something

in the morning only to discover that they needed to recom-

pile due to a change in the controlled library.

H
n

5399
2-19

h_

m

Table 2-2. Nesting Versus Library Units I

NESTING

ADVANTAGES DISADVANTAGES

• Information hiding
• Visibility control
• Type declarations in one

place

• Enlarged code
• More recompilations
• Harder to trace problems

through nested levels
• Can1 easily identify source

of call for a unit of code

• Type declarations in one
place makes reuse more
difficult

• Maintenance more difficult

• Debugger required
• Larger unit sizes inhibit code

reading
• Harder to reuse units

LIBRARY UNITS

ADVANTAGES

• Fewer recompilations
• Easier unit testing
• Smaller components
• Smaller files

• Smaller compilation units

• Less code duplication
• Easier maintenance
• "With" clauses show source

of other code units used
° Easier reuse

• Easier configuration control

DISADVANTAGES

• No information hiding
• Complex library structure

Lt3

J

!

mjm

m

l

1
I

ill

i

I

I

m

m

!

5399

2-20
a

m

w

--w

z

=

2.3.3 FDAS DIFFERENCES

The different implementation problem faced by the FDAS team

caused some implementation differences. The goal of FDAS

was to have interchangeable modules within the system that

could easily be replaced with other modules to form a new

system. Thus, the team wanted all the modules to be easy to

locate, and they preferred to have smaller modules. Because

of this philosophy, they used very little nesting and very

few call-throughs. Most of the units in FDAS are developed

as library units. The team found that it was much easier to

have units that would plug in and pull out with Ada modules

than with FORTRAN modules.

The FDAS team also found it extremely useful to separate the

specifications and bodies of units and compile them sepa-

rately. In fact, they even discovered a way to use two dif-

ferent bodies for the same generic specification.

2.4 RECOMMENDATIONS

Nearly all of the GRODY team recommended that all the PDL

should be developed using compilable Ada during the design

phase. Applying this recommendation would have lengthened

the design phase and postponed the CDR until later in the

development. This technique would also aliow GRODY's

Build 0, which consisted of the majority of the system's

specifications, to be generated during the design phase.

This initial build of the specifications was considered a

good way to begin Ada implementation. Further, the practice

of separating specifications and bodies was considered bene-

ficial and was recommended for future developments. The

specifications should be under configuration control at the

start of implementation. It was felt that more time spent

on the design during the design phase would have led to a

smoother implementation phase.

w

5399

2-21"

l

One recommendation for future Ada developments is to incor-

porate an abstract data type analysis into the design proc-

ess to control the generation of types. A general new type

would be defined, and then many subtypes of that type could

be used in various sections of the application. This type

analysis would provide the following advantages: operations

would be reused, there would be fewer main types to manage,

and families of types would be developed that would inherit

properties from each other. Careful consideration of types

during the design process could prevent uncontrolled pro-

liferation of new types during implementation.

Another implementation recommendation concerning types in-

volves the global type package and the use of enumerated

types. One suggestion was to break the global type package

into smaller packages with fewer types in each to localize

the impact of changes in the packages as much as possible.

Another suggestion was to have the capability of more flex-

ible enumeration types. Certain enumeration types could get

their values from an external file with the values listed as

string literals. Then the list of values could change and

no recompilation of the type package containing the enumera-

tion type would be necessary. This method would take more

planning, but could prevent much of the recompilation caused

by changes in the global type package.

A frequent recommendation heard from team members is that

library units should be chosen instead of nested units be-

yond the first few hierarchical levels and whenever there is

a high degree of interaction among the modules.

Another recommendation for translating the design into code

is that the number of call-throughs be kept to a minimum.

It was felt that it would be better to leave some of the

design objects as abstract objects with no direct corre-

spondence to an object or module in the code. This would

l
I

mm

J

W

m

I

m

m

mm

M

m
m

I

um

!

5399
2-22

B

L

7_

m

w

n

W

m

simplify the structure of the code and reduce the amount of

unnecessary code.

One programmer commented that his code consisted solely of

procedures and that he had not used functions at all. In

retrospect, he felt he should have used functions for mod-

ules used to compute a single value since they can then be

used in declarations. Another programmer recommended that

similar functions be collected in one package instead of

spread out in several different packages.

Several team members felt that certain design and implemen-

tation changes would have increased GRODY's potential for

reuse. As previously mentioned, the heavy use of nesting

affects potential reuse. Another factor affecting potential

reuse is that the basic utilities written for the system are

grouped into one large package. Some of these utilities are

general and could be reused, while others are GRO-specific

and would not be suitable for another system. Reuse poten-

tial would be increased by grouping the GRO-specific ones in

a package separate from the more general ones. One sugges-

tion was to develop a hierarchy of reusable packages.

Also, more consideration for operational efficiency might

have produced a design that could be reused more easily.

The design was developed to simulate the sequences of events

as they occur in attitude control systems, but this caused

many computations to be done repeatedly, instead of saving

computed results for future needs. Future simulators might

need to operate more efficiently and thus would not choose

to reuse the more realistic design. Potential reuse of a

system needs to be considered carefully during the design

phase of a project.

The use of some standard, like the Ada Style Guide used by

the team, is recommended to provide guidance on the usage of

language features and to establish a consistent standard of

5399

2-23

coding for teams with several members. Team members sug-

gested changing the style guide so that fewer lines of code

are used for declarations and less commenting is specified.

Another related recommendation was to use some sort of tool

like a pretty printer to provide the consistent style de-

sired without requiring an extensive investment of time on

the part of the implementation team.

Ada makes the concurrency constructs of tasking readily

available and there is a tendency to use tasking because it

seems a convenient way to perform functions. Tasking was

very difficult to control and test and it should be used

only when really appropriate to the particular situation.

If tasking is appropriate for an application, an overall

view of the actions and interactions of the various tasks

planned should be examined during design. Using tasking

also affects future reuse since small changes in tasks can

cause changes in their interactions with other tasks, making

them more difficult to reuse in a different system. See

Section 3.4 for more description of the design of tasks.

m--

m

n

#m

=

u

mu

am

q

I

I

l

W

i

w

i

,ira

5399

2-24

z

U

m

.I

E_

SECTION _ - UNIT TESTING, INTEGRATION, AND INTEGRATION

TESTING ISSUES

3.1 INTRODUCTION

One of the early expectations of the Ada team was that Ada

would'make unit testing, integration, and integration test-

ing easier. The interfaces were defined earlier and thus

could be verified sooner, the compiler was expected to catch

more of the errors in Ada than in FORTRAN, and, finally, the

English-like nature of Ada should make the discovery of er-

rors easier, since it would help describe what a module was

to do. Actually, several factors made the unit testing and

integration unexpectedly difficult, as described in this

section.

3.2 THE ADA APPROACH

The Ada team began the unit testing, integration, and inte-

gration testing phases using the same approaches generally

used by FORTRAN teams. Initially, they tried to unit test

each module individually and planned to use code reading.

As the testing progressed, some changes were made in the

testing approach.

3.2.1 PROCESS

3.2.1.1 Unit Testing and Code Reading

Typically, as soon as the code for a module is developed and

a "clean compile" (a compilation with no errors) is ob-

tained, the code is ready for unit testing and code read-

ing. These are the first steps in verifying that the code

actually performs the required functions. During unit test-

ing, a developer, usually the one who developed the code,

executes a module independently to check its function.

3-1

5399

Code reading is the visual examina£ion of the compiled code

to verify that the code will satisfy the function assigned

to the module in the design. The code is also examined for

any errors that might not be discovered during compilation,

such as logic and style errors. Code reading is usually

done by another developer who is familiar with the design

but not the particular module. Code reading and unit test-

ing are usually done concurrently (see Sections 3.3.2 and

3.3.5).

The introduction of Ada as the implementation language

drastically changed the unit testing methods. Tradition-

ally, when FORTRAN modules are being unit tested, numerous

debug "write" statements are added to the code. This method

was not used for the Ada code because the additional compi-

lation required would be extremely time consuming. Instead,

the Ada code was tested with a debugger, which was consid-

ered essential. (More information on the debugger is in-

cluded in Section 3.2.2.) A debugger is available for

FORTRAN in the flight dynamics development environment, but

it is not used often by the developers. Thus, the differ-

ence in unit testing is that the FORTRAN code is more al-

tered than the Ada code.

Unit testing was found to be harder with Ada than with

FORTRAN. In addition, the unit testing of GRODY was much

harder than the team expected. FORTRAN modules are already

relatively isolated and can be tested simply by adding the

necessary global COMMONs. This makes the unit testing of

these modules easy. On the other hand, the Ada modules are

much more interdependent and require large amounts of

"with'd in" code before testing can be accomplished. The

FDAS project probably had even more interdependence between

modules than GRODY. The FDAS team also felt that this in-

terdependence increased unit testing difficulty. In addi-

tion, the embedded specifications in GRODY made the unit

3-2

5399

W

g

m
n

n

Wm

n

l

I

w

mm

qm

n

n

u

l

m

m

w

L

u

L

w

testing more difficult since it increased amount of stubbing

required.

As a result of these problems, a different approach was used

during Ada unit testing. Since it was difficult to test a

unit in isolation when it depended on many others, Ada units

were integrated up to the subsystem level and then unit

testing was done. Subsystem integration means integration

of all units from the lowest level up to the lowest-level

library unit. This integrated subsystem was tested in

pieces by choosing only a subset of the possible paths or

units at a time. The debugger is used to examine a specific

unit since the test drivers cannot "see" the nested ones.

In the usual FORTRANdevelopment, no integration occurs un-

til after the unit testing is complete.

Thus, the biggest difference between the way FORTRAN and Ada

projects are handled up to this point is the incremental

integration. This represents a change in the development

life cycle of an Ada product, since integration and unit

testing are done alternately rather than sequentially.

The library unit/nesting level issue directlY affects the

difficulty of unit testing. The greater the nesting level,

the more difficult unit testing is, since the lower-level

units in the subsystem are not in the scope of the test

driver. This makes a debugger a required testing aid with

Ada projects. It was felt that the use of more library

units and less nesting would have increased the ease of

testing.

Two other methods of handling nesting during unit testing

were tried, but neither was very satisfactory. In one

method, an inner package is extracted from the outer package

and tested separately by including the types and "with'd in"

modules used by the outer package. The other method in-

volves modifying the specifications of the outer package

3-3

5399

ll

so that the nested packages are in the scope of the test

driver (or can be "seen" by the test driver). Both of these

methods required time-consuming recompilation. The team

found that the best method of testing nested units was to

rely on the debugger and test them in conjunction with their

encapsulating packages.

The importance of unit testing may be related more to the

application area than to the implementation language. Re-

gardless of whether the language was FORTRAN or Ada, a more

important consideration might be the application. If it

contains a heavy concentration of calculations ("number

crunching"), then unit testing might be much more valuable

since calculation errors become evident when only a small

amount of localized code is executed. On the other hand, if

the application contains a complex pattern of data manipula-

tions like those found in FDAS, then execution of larger

portions of the system is necessary to isolate errors.

Unit testing of a mathematical unit can be a problem when

the tester is not sufficiently experienced in the particular

application field. A tester without an appropriate.math or

physics background may have difficulty determining the cor-

rectness of answers produced by highly mathematical routines.

The math specifications provide the algorithm to be used,

but often fail to provide the range of "reasonable" input

and output values. In general, these mathematical units

were not interconnected units, so they could be coded and

tested easily as long as the I/O was known. Nesting was not

a problem in testing this type of unit.

3.2.1.2 Intearation

GRODY development included a period of integration after

unit testing was completed, during which all the units

developed for a particular release were combined into one

load module and tested as a un{t. This integration was not

5399

3-4

=

W1

m

m

i

ll

ll

Ill

ql

m

m

i

el

ll

W

I

ll

ll

U.,

=

r

w

t_

as extensive as it usually is in a FORTRAN project because

some integration had already been done during the unit test-

ing phase (see Section 3.2.1.1). A separate library was

maintained for each release so that integration testing

could be conducted while coding and unit testing for the

next release continued (see Section 3.2.2 for more informa-

tion on library structure).

The first release of GRODY to be integrated included the

complex user interface and was more difficult to integrate

than the team expected. The user interface includes practi-

cally all of the tasks in the completed system and requires

the use of modules from the simulator subsystem in addition

to its own modules. Many of the modules from different sub-

systems were in later releases of the system and had not

been coded at the time of the first release integration.

Thus, many stubs had to be created in order to link the user

interface.

Typically, types of problems that are discovered during in-

tegration include performance problems (such as length of

t{me to allocate files, time to do I/O, and tasking interac-

tion), space problems, and errors in flow of control and in

interfaces between modules. In addition, user interface

screen messages were improved during integration. Tasking

interaction was one of the major problems encountered during

GRODY integration testing, since tasking was new to the de-

velopers and there were some misunderstandings about the way

it worked. Some redesign of the tasking was necessary and

some new tasks were added during the integration period. A

more detailed discussion of these problems is found in Sec-

tion 3.3.1.

One interface error that was not discovered until integra-

tion testing was an array that was being passed by value

rather than reference. This error caused a space problem;

3-5
5399

multiple copies of the array were being stored and the error

was difficult to locate since it occurred in a task, result-

ing in the deadlock of five tasks. One of the difficulties

was isolating the particular task causing the problem.

The Ada team expected to have fewer interface problems dur-

ing integration than would normally be encountered in a

FORTRAN development, for two reasons: first, the early de-

velopment of specifications allowed the interfaces to be

clarified much earlier than is possible in FORTRAN; and sec-

ond, there were fewer parameters involved in interfaces due

to the use of records. Contrary to expectation, many proce-

dures had parameters that needed to be added or deleted dur-

ing integration testing, and in some cases whole new

procedures were needed. One reason for this was the poor

understanding of a module's function. For example, two in-

dividual developers each may have thought the other washan-

dling the initialization of a particular parameter, when, in

fact, neither was. Another very common misunderstanding

concerned the units of particular parameters. These prob-

lems emphasize the importance of communication among devel-

opers during implementation. In fact, the Ada developers

did spend more time in meetings, but most of the communica-

tion involved problems that were new to Ada and not the types

of problems that are typical of any development effort.

Integration was done on the subsystem level by the lead de-

veloper of that subsystem. Integration testing for a re-

lease-was then done by an individual assigned to that task.

Testing was done on a functional level so the types of tests

performed were similar to those performed on the FORTRAN

system. Some of the difficulties encountered during inte-

gration testing seemed to be related to the fact that the

tester was unfamiliar with both the application and the

l

J

m
mmm

W

m

J

_m

mm

J

l

mm

g

5399

3-6
m

i

I

w

m

design, and hence had difficulty isolating the source of

problems. Thus, a problem would be reported to the devel-

oper of the module where it seemed to occur, but often the

problem was actually in another module. In some cases, the

improper handling of an exception would cause a problem to

appear to be in another module.

Tasking further complicated the problem of isolating errors,

especially where exceptions were concerned. First, it was

difficult to determine if a task was running and which por-

tion of the task was being executed. Then, if an exception

occurred in the task, the task would terminate and the ex-

ception would not be propagated. Finally, exception han-

dlers in tasks obscured system error messages so they were

not displayed when they occurred. (See other problems with

tasking and testing in Section 3.3.1.)

3.2.2 TOOLS AND LIBRARY STRUCTURE

The tools used during unit testing and integration included

the compiler, DEC's ACS, DEC's CMS, and the debugger. The

compiler was found to be very useful for pinpointing the

types of errors that are'often found during unit testing.

Some early problems with the compiler included incorrect

compilation of generics, incorrect code generation, and in-

correctly optimized code. For example, in the code gener-

ated, type word would be used instead of type longword. In

other cases, some necessary values were deleted from the

optimized code so that the resulting code would not execute

properly. With the generics, code was not compiling even

when syntactically correct; later, the code generated was

not algorithmically correct. During the course of this

project, the compiler matured and most of the problems were

corrected in later versions. However, the compilation re-

mained very slow, which caused the developers to look for

methods of avoiding excess compilation.

5399

3-7

The debugger was found to be an indispensable tool during

unit testing, integration, and integration testing, since it

allowed the developers to violate the normal Ada scope rules
and "see" into modules Which were nested. It also helped to

avoid the edit-compile-link-run cycle, since variable values

can be changed during execution when problems occur. For

instance, if a variable had not been initialized, it could

be initialized with the debugger and execution could con-
tinue to see if the remainder of the module worked prop-

erly. One developer commented that the debugger made

integration in Ada much easier than in FORTRAN, but integra-

tion without a debugger was much more difficult than in

FORTRAN. For example, the debugger discovered the genera-

tion of an incorrect value when records were being skipped;

code reading did not find this error because the logic lead-

ing to the error spanned several modules.

In the early phases of development, the debugger interface

to the rest of the DEC system did not work properly and the

GRODY team had to get a prerelease version of the debugger

to continue using it. Even as the debugger matured, there

were problems with it, and many of the developers commented

that they wished it were improved. The debugger's limita-

tions included its inability to enter some nested routines

due to difficulty locating the source, its tendency to "get

lost" and be unable to identify where it was, and its lim-

ited ability to provide information during tasking. The

developers also commented that sometimes errors would occur

when using the debugger that did not occur otherwise.

Code was managed using both the DEC ACS and the DEC CMS.

Figure 3-1 shows the library structure used in GRODY. It

shows that there was only one CMS library, which was the

controlled library and contained all of the source code as

it was placed under configuration control. The ACS

N

m

m

I

g
I

J

mm

J

g

g

u

g

z

D

5399

3-8

m

U

--=

w

w

w

ii

5399

8-($_)_)66¢S

h r'°

HI
o_

i[, " , i _=>=_

>

3-9

8
o

-

I._

._1

I

i

libraries are used by the'Ada compiler and contain the ob-

ject code, the files necessary to track module dependencies

and other information necessary for automating Ada's complex

library functions, and the source code necessary for automa-

tic recompilations.

The top-level ACS library contained all the global code,

such as utility packages and global type packages, used by

all the subsystems. The next level of ACS libraries con-

tained several types of ACS sublibraries. First, there was

a library for each subsystem which contained the code for

that subsystem. Some of these subsystem sublibraries had a

level of sublibraries below them for portions of the subsys-

tem. The library structure was designed in this manner be-

cause the ACS begins searching in the lowest-level library

to find necessary components, and when they are not found,

examines the next-higher parent library. On the level with

the ACS subsystem libraries were individual developer li-

braries which the developer controlled. There were also two

integration libraries on the level with the ACS subsystem

libraries--one for integrating Build 0 and Build i, and one

for integrating Builds 2 and Build 3. (This library also

included the code in Build 0 and Build I.) This parallelism

in the integration library structure was intended to in-

crease the development progress, but there were some con-

figuration problems with keeping two libraries current.

When changes were made in the Build 0/Build 1 library, extra

care had to be taken that the same changes were included in

the other integration library. At the end of integration

testing, all the code was moved into the top-level ACS li-

brary.

The existence of the CMS library helped to reduce the number

of recompilations through the control placed on the library

units. Only one developer was allowed to make changes to

this library, and it was his responsibility to notify other

5399

3-10

I

i

i

i

i

D

u

i

I

B
R

um

l

m

d

g

i

I

m

i

= =

u

team members whenever changes had been made. With this li-

brary structure, the developer could use the ACS subsystem

libraries or pull modules from the subsystem library into

his own library to avoid recompilation of these modules (see

Section 2.2.3).

The Ada project library structure was quite different from

that usually used with FORTRAN and some developers had dif-

ficulty learning to use it properly. One developer com-

mented that many of his compilation errors were caused by a

poor understanding of the complicated Ada library structure

and the dependencies of the code.

Although the tools available to the GRODY team were found to

be useful, many other tools that were not available were

placed on a wish list. Probably at the top of the list is a

stubber that would take a specification and automatically

generate a stub to satisfy the linker. This tool was writ-

ten by members of both GRODY and FDAS, independently, to aid

the integration process. A library of stubs was eventually

built up using these tools. Another item on the list is a

tool that could tell the compiler to ignore something, such

as a module that was not present, for the same result as a

stubber. Another desirable tool could examine a specifica-

tion and identify any calling sources and external refer-

ences.

Some additional capabilities were desired in the domain of

the ACS. For example, a tool was mentioned that would make

compilation more automatic and track the compilation order.

At present, if a unit is changed such that the compilation

order required for dependent units is altered, some of the

recompilation must be done manually. These changes occurred

frequently enough to warrant generation of a tool automating

the process. Another desirable ACS-related tool is one that

could automatically recompile out-of-date units. In the

5399
3 -ii

current system, whenever an out-of-date unit is identified,

the linker notifies the user and aborts the link. It would

be much more convenient to have the option of automatically

recompiling the unit and continuing with the link.

Other items on the wish list included tools to aid in docu-

mentation. For example, a tool might pull out all the spec-

ifications for documentation or even use them to create

object diagrams or structure charts of the system. Some

extraction tools were developed by the team to aid in docu-

mentation.

3.3 COMPARISON OF ADAVERSUS FORTRAN

3.3.1 ADA-SPECIFIC FEATURES

Just as some Ada features were easier to code than others,

they also presented varying amounts of difficulty during

testing and integration. The features that caused the most

difficulty during testing were tasking, strong typing, the

misuse of exception handling, and the extensive use of nest-

ing.

The strong typing of Ada was found to be a mixed blessing

during testing, especially for a team not accustomed to it.

The rigor of the typing forced careful attention to that

detail and prevented many of the typing errors usually seen

early in FORTRAN implementation. Other errors were discov-

ered during the compilation stage and were corrected even

before unit testing and integration. However, the strong

typing presented some new problems for the testers. It was

more difficult to write test drivers to handle units with

multiple types. One solution was to code the drivers as

large "case" statements to test each type. The strong typ-

ing also increased the complexity of the I/O, which dealt

with each type differently. One developer described the I/O

as being "annoyingly different in the different levels of

abstraction," due to the strong typing. The developer tended

mm

mm

J

w

g

i

l

U

g

u

5399

3-12 V

g

h

w

r...-

m

to view many of the different types in the system as "merely

numbers" when they were actually separate types. Multiple

types also meant more operations and more code that required

testing.

During testing, it became obvious that exception handlers

must be coded very carefully to provide the maximum benefit

to the Ada developer and user. In certain cases, improperly

coded exception handlers tended to obscure errors instead of

helping to pinpoint them. Suppose, for example, a module

that is called to get the current Sun angle in turn calls

the timer to get time necessary for calculation. If a se-

rious error occurs in the timer routine, a FORTRAN program

would terminate at that point. However, the Ada program

will continue to execute, following the corrective measures

specified in the exception handler. Suppose a null value is

returned to the Sun angle module, which might use that and

arrive at some incorrect calculation. This might cause a

new exception at some point further on in the execution. By

this point, it is hard to trace the error back to the timer

routine. This problem can be avoided by ensuring that ap-

propriate corrective measures are specified by the exception

handler, instead of a "temporary fix" that just allows exe-

cution to continue. Properly coded exception handlers were

found to be very useful in locating errors.

Tasking was, by far, the most difficult feature to test.

Functional testing was used, but due to the concurrency, it

was much more difficult to ensure the correctness of the

tasks. It was necessary to show that the task was actually

invoked and that it functioned properly. Traditional test-

ing methods and the tools available did not provide as much

of this information as the team would have liked. The mis-

use of exceptions in tasks further obscured the detection of

errors. Error detection was also complicated by the fact

that exceptions in tasks do not propagate except during

5399

3-13

rendezvous, so tracebacks are not provided. Even when the

exception occurs during rendezvous and propagates, the

traceback begins at the rendezvous point and does not pro-

vide any previous information. Also, if the task calls a

package not within its static scope and an error occurs, an

exception cannot be propagated by an error in that package.

In order to get a useful traceback during integration test-

ing, the developers often needed to comment out the excep-

tion handlers in tasks. Then the higher-level exception

handlers in the user interface or the operating system would

catch the error and provide a traceback. Another problem

was that tasking would prevent operating system error mes-

sages from being displayed on user interface screens that

were created by the DEC screen management system.

One approach used to isolate tasking problems was to change

each task to a sequential unit, one by one, until the prob-

lem was located. This was very time consuming, but was nec-

essary since appropriate diagnostic information was not

otherwise available. This is the method used to locate the

error described in Section 3.2.1.2 concerning the incorrect

passing of an array.

During integration testing, although the developers knew

that lateral calls could occur in sibling level tasks so

that some tasks could indirectly call themselves, they did

not realize that this could cause cycles to occur. Thus,

when two or more tasks needed to get a response from each

other before proceeding, they formed a cycle and deadlocks

could occur. This problem was aggravated by errors in the

tasks and exception handling. These potential deadlocks

were eliminated by creating a parent task to call any of the

sibling tasks and control the exchange of information be-

tween them. The disadvantage of this approach is that it

produced more tasks.

J

D

i

mm

==

m

mm

u

g

Im

[]

z_

-4

l

mm

u

D

5399
3-14

Im

Im

w

Another problem discovered during testing was caused by a

deficiency in the DEC runtime system and the task schedul-

ing. The runtime system makes a table entry to record the

status of a task when it is elaborated (when its declaration

appears). Possible status entries for a task include

• Ready--when a task has all the resources except CPU

• Suspended--waiting for a rendezvous

• Waiting on I/O

• Terminated

• Executing

The runtime environment uses these status entries for sched-

uling so that a task is scheduled when it is "ready," and

execution continues until the time-slice expires or the sta-

tus changes. "Ready" tasks are scheduled according to pri-

ority. The problem between the runtime system and the

screen manager occurred when the screen management system

was waiting for input from the keyboard. In this case, the

status should have been marked "waiting on I/O," but instead

it was marked "ready." The result was a very inefficient

program, since the task spent a whole time-slice waiting for

I/O. Thus, the tasks that were doing useful work got a very

small percentage of the CPU. The development team was in-

formed that this could be corrected by changing priorities,

but they were unable to use this method of correction. In-

stead, another task was added to change the entry in the

status table to reflect the true state of the task in ques-

tion.

3.3.2 USEFULNESS AND IMPORTANCE OF CODE READING

Since the Ada compiler locates many more types of errors

than the FORTRAN compiler, the types of errors found by code

reading differ in the two languages. For example, common

errors found during FORTRAN coding reading include wrong

data types, calling sequence errors, and variable errors

5399

3-15

(either the variable is declared and never used, or it is

used without being declared). These types of errors were

pinpointed by the Ada compiler and not found during code

reading. Several Ada developers commented that code reading

Ada would not be as interesting since many of the "interest-

ing" errors had already been corrected. Most developers

also felt that Ada code reading was easier due to its

English-like nature. This difference was magnified by the

fact that some of the FORTRAN code was reused code of an

older variety without structured constructs to aid readabil-

ity.

Several Ada coding features increased the difficulty of code

reading. First, it was difficult to follow a path through

parts of the system since so many call-throughs had been

used. Second, the SEPARATE facility of Ada, which allowed

pieces of the system to be compiled separately, resulted in

the generation of many separate units that had to be exam-

ined to determine the correctness of a function.

The most common errors in Ada were style errors such as in-

correct comments, format inconsistencies, or incorrect debug

code. Other types of errors found during code reading in-

cluded initialization errors and problems with design/code

incompatibilities. Such incompatibilities might be caused

by either design or implementation errors.

Some types of errors were difficult to find by code reading

in either FORTRAN or Ada. Logic errors are difficult to

locate in this application domain, and so very few were dis-

covered, though enough were found to make code reading

worthwhile. Errors that spanned multiple units were also

overlooked in both development languages. One error not

located during Ada code reading was an output problem in

which records were being skipped. Code reading of the

highly algorithmic routines appeared to be very important in

I

g

I

= =

mm

g

ms

l

J

m

g

J

I

I

L_

mm

5399

3-16
m

U

m

u

- =

L__

w

z

both application languages. Developers of both systems com-

mented that code reading was the best way to locate such

errors as using "less than" instead of "less than or equal."

The Ada team also felt that code reading had an additional

benefit as a training tool. As one developer read another's

code, he would discover different or improved ways of coding

the problem.

3.3.3 UNIT TESTING AND INTEGRATION

The unit testing and integration of GRODY was more difficult

than was expected and more difficult than in the FORTRAN

system. Several factors contributed to the differences in

difficulty between the two languages. The first factor is

the experience of the two teams with the languages they were

using. The FORTRAN team was quite experienced in FORTRAN

and had well-established procedures for this testing and

integration. Library structure and configuration control

methods were familiar to all the FORTRAN team members. Li-

brary structure of the Ada system was new to the GRODY de-

velopment team, and configuration control methods needed to

be established.

The other major causes of difficulty in unit testing and

integration of the GRODY system were the degree of nesting,

the tasking in the system, and the exception handling.

Nesting can be used in a FORTRAN application, but usually is

not as extensive as it was in the GRODY system. Testing of

nested units is more difficult in Ada due to problems with

visibility of parameters not in the scope of the driver.

Tasking and concurrent processing applications are inher-

ently difficult to test. This capability did not exist for

the FORTRAN team, so problems with concurrency did not

arise. Similarly, Ada's exception-handling capability pro-

vides much more flexibility and power than FORTRAN. With

Ada, many more errors can be trapped and handled, but that

5399

3-17

also means that all possibilities must be considered and

appropriate actions provided so execution can continue in a

satisfactory manner. Coding these expanded capabilities

requires new skills. Error handling in FORTRAN is limited

and controlled by the system, whereas Ada error handling

depends on action specified by the error handler and rules

of propagation. Error handling is developer-controlled and

there is no uniform outcome. Thus, some of the difficulty

encountered by the Ada team was due to the expanded capabil-

ities available in Ada, some was due to inexperience with

the language, and some was due to overuse of nesting.

3.3.4 SYSTEM GROWTH

In general, the GRODY system growth curve was smooth during

implementation, in contrast to the FORTRAN development,

which tends to grow by chunks and fluctuates as large

amounts of potentially reusable code are added to the li-

brary and unsuitable modules are deleted. However, the

GRODY development growth history did show a notable differ-

ence in the amount of code added to the controlled library

after the beginning of system testing. GRODY system testing

began in in July 1987. By then, implementation had offi-

cially ended, and the controlled library contained about 90K

SLOC. However, there were still portions of the systems

that had not been unit tested or placed in the controlled

library. Most of the remainder of the code was gradually

unit tested during the fall through about mid-December 1987,

and placed in the controlled library. By mid-December, the

controlled library contained II9K SLOC. The delay was

caused by a lack of analyst support to aid the developers in

the final verification of these modules, as well as a short-

age of testing time; on the part of the developers. By this

point in the GRODY development, most of the developers had

been placed on other projects with more critical schedules

W

m
ll

ll

mm
ll

u

m

ll

ll

ll

ll

ll

k

i

W

ll

m

U

mR

5399

3-18

U

i

m

= =

w

z

w

and they found it difficult to find time to complete the

GRODY testing.

The final chunk of 7 to 8K SLOC was added in April 1988.

This portion of the code contained the Kalman filter, which

had been difficult to unit test. The remainder of the code

added during system testing seems to be intended to correct

errors. The final system size of GRODY is 128,064 SLOC.

While it is not unusual for a FORTRAN project to begin sys-

tem testing before all of the unit testing is completed, it

is unusual to find as much phase overlap as we found in this

project. It appears that some of this problem can be at-

tributed to the lack of a firm schedule, rather than speci-

fic problems due to Ada.

3.3.5 ERRORS

A detailed discussion of the error statistics can be found

in Section 4.3.7. This section will discuss some observa-

tions made by team members concerning errors. Ada team mem-

bers felt there were about the same number of errors in Ada

as in FORTRAN, but early data from the SEL change report

forms indicated that more errors were discovered in the Ada

code. Later statistics show that the rate of errors per

line of code is about the same for the projects, although

the actual number of errors is higher for the Ada project.

Some team members felt that there were actually fewer errors

in the Ada code, and that more of the errors were being iso-

lated, at an earlier stage, with less testing to isolate

them. There was also more reworking of the Ada code to cor-

rect errors and to make improvements, probably in part be-

cause of inexperience with Ada and in part because the team

was not constrained by schedule pressure. This resulted in

increased implementation time. This may be offset by in-

creased reliability. Team members felt that future Ada

3-19
5399

projects might be able to achieve lower error rates than

FORTRAN projects.

The object-oriented methodology had an effect on the types

of errors made (see Section 2.2.2 for more information on

design issues). A poorer understanding of the function of

the units resulted from the nonalgorithmic descriptions of

these units below the package level. As a result, the Ada

team required more meetings than FORTRAN teams usually re-

quire, in order to clarify the functions of the units. A

number of errors occurred when a team member assumed, incor-

rectly, that a certain module performed a certain function.

Additionally, the strong typing of Ada required frequent

type changes, especially for enumeration types used in pa-

rameters. This led to many recompilations (see Sec-

tion 2.2.3) of large portions of the system, because the

simulator types were located together in one high-level

package. Except for the many changes necessary in parameter

lists, interface problems were infrequent in contrast to

FORTRAN, where these errors make up a significant percentage

of the total usually found (see Reference 5).

AS expected, producing a "clean" compilation (one without

any errors detectable by the compiler) was more difficult in

Ada than in FORTRAN. The team estimated that this usually

takes about an hour. One reason for this is that an Ada

compiler is much more stringent than a FORTRAN compiler and

checks for many more types of errors. Secondly, the newness

of Ada caused some problems in compilation, since some of

the more obscure language features were not completely un-

derstood by the team. For example, "delay" and "terminate"

cannot both be in a given task, and exceptions in a task

body terminate the task rather than propagating the error,

except at the rendezvous.

W

rl

J

u

m
D

g

n

i

I

in

m

g

I

W

mR

5399

3-20 W

I

w

w

= :

= :

w

g

Once the code compiled successfully, the team felt more con-

fident about the reliability of the code: they felt that

syntactic, semantic, and logic errors were less likely to be

present and that the longer time spent achieving correct

compilation would be offset by a decrease in the amount of

time necessary to unit test. In fact, this savings was not

realized, because unit testing was much more difficult than

the team had expected (see Section 3.2.1.1).

As previously described, error detection in tasks was much

more difficult than in other types of units. A great deal

of integration time was spent in debugging tasks and coordi-

nating their execution. This problem did not occur in the

FORTRAN development since there was no concurrent capability

and no type of module corresponding to a task.

It was very hard to isolate the errors in some types of data

structures, such as the complex tree structure with pointers

that is found in FDAS. In this case, the debugger was no

help, so code reading and hand tracing were required. This

type of problem is language independent.

Exception handling features of Ada were very useful for er-

ror detection, but, as discussed earlier,_they could obscure

the errors when improperly coded. In FORTRAN the error

would cause the unit to fail and a traceback would be pro-

vided, but in Ada the error is detected and the action taken

depends on the code in the exception handler.

Another difficulty experienced in discovering errors in the

Ada code is a tendency for programmers to be lazy. Overcon-

fidence in the error-detection capabilities of the compiler

and the runtime system causes errors to be overlooked. Pro-

grammers found they could look at the same error repeatedly

and still fail to recognize the problem.

z :

E_

w

5399

3-21

Team members also found that they had a certain intuitive

understanding of FORTRANthat helped them recognize the
source of an error which manifested itself in a particular

way. This intuition did not seem to transfer to Ada. One

developer very experienced in FORTRANcommented that he lo-

cated FORTRAN errors by knowing what the compiler does in-

ternally. The actions of the Ada compiler are hidden, so

this method was not useful in Ada.

Error correction was generally not a problem in either Ada

or FORTRAN. One difference was noted in dealing with Ada

non!ocal errors (those involving more than one routine).

Here, recompilations were sometimes a problem due to the

slowness of the compiler and general unfamiliarity with the

library structure and dependencies of Ada. These factors

sometimes caused other errors.

Style errors were the most common errors discovered during •

code reading. Other types of errors were initialization and

problems with inconsistencies between the design and code.

In general, logic errors are hard to isolate in this appli-

cation domain, but enough were found to make code reading

worth while.

Unit testing found some obscure errors. Among these were

endless recursion, switching matrix element positions, and

typographical errors.

3.4 RECOMMENDATIONS

As noted in Section 3.2.2, Ada's library structure is much

more complicated than that usually used with FORTRAN. A

thorough understanding of this structure is very helpful

when developing a large Ada system and it was suggested that

some training on library structure be included in any Ada

training.

J

im

w

I

I

I

um

D

mR

I

I

B

5399
3-22

l

l

=_

w

_2

i

i

w

w

Code reading was considered as useful in Ada as in FORTRAN,

but it might have a slightly different emphasis in Ada. The

team felt that the greatest value of code reading occurred

in highly algorithmic routines, where complicated equations

needed verification, and in determining that the code actu-

ally conformed to the design. An additional suggestion was

that code reading should be used as a training tool to help

new developers improve their use of Ada.

The team had several recommendations concerning unit test-

ing. First, they felt that unit testing should be redefined

so that unit testing is actually done on the package level

instead of the module level. Modules up to the package

level would actually be integrated before unit testing is

attempted. This simplifies the testing problems by allowing

any embedded module (or nested module) to be tested in con-

junction with its parent.

Second, they recommended less nesting to improve testing

ease. They suggested that library units should be used down

to a much lower level in the system. This would enable many

more units to be tested Separately and would reduce the

amount of recompilation that the team found necessary during

unit testing. Both methods used to isolate nested units and

their encapsulating packages--extracting the nested unit, or

modifying the specifications of the outer package, as de-

scribed in Section 3.2.1.1--significantly increased the

amount of recompilation necessary.

The number of stubs required for testing was a problem for

the Ada team. One suggestion for future developments is to

create a library of specifications at the beginning of im-

plementation and keep it in the configuration library. Then

the necessary modules for linking would be available for

integration at any point.

5399

3-23

One non-Ada-related suggestion for integration testing is to

have at least one tester on the test team who is thoroughly

familiar with the application. Then, when results are ob-

tained, the tester will be able to determine whether they

are mathematically correct. If they are not, the tester

should be able to determine the source of the problem by

examining the reasonableness of other intermediate results.

Several team members recommended incorporating exception

handling features into the design, rather than as an imple-

mentation detail. Exceptions would be part of the abstrac-

tions developed during design. The design should specify

what exceptions should be raised, where they will be han-

dled, and what action should be taken.

The team recommended that tasking be used very conserva-

tively. Ada makes syntactic constructs for tasks so readily

available that it is easy to overuse this feature. The con-

trol of tasking should be considered during the design

phase, where an overview of all the tasks should be devel-

oped that would contain a picture of each task, where it is

located, and how it interacts with all the other tasks. An

overall view during the design phase would probably have

reduced the number of extra tasks added during testing by

providing more control over task interaction. The team also

felt that the design notation should show control interac-

tion (i.e., when the tasks need to interact and when they do

not). The design notation used shows dependencies of the

tasks, but does not specify information such as how to han-

dle accepts, when tasks should terminate, and what happens

if a task terminates abnormally. It wouid be helpful to

include this information in future design notation describ-

ing tasks.

w

I

I

im

Im

m
m

I

u

I

w

mm

I

m

J

E
u

g

m
I

5399

3-24
z

I

W

w

w

= =

SECTION 4 - MANAGEMENT ISSUES

4.1 INTRODUCTION

Since GRODY was one of the first Ada projects in the flight

dynamics environment, there was little experience with man-

aging Ada projects. Initially, a management plan similar to

the type used for FORTRAN projects was used (References 5

and 6). The development was divided into the same life-

cycle phases and the same review pattern was used. Similar

mechanisms for evalulating progress were established. One

of the project objectives was to determine the usefulness of

these methods during an Ada development. The Ada team had

expected some differences in the development cycles of Ada

and FORTRAN. For instance, they expected design to take

much longer in Ada than in FORTRAN. They also expected im-

plementation and testing to be much easier in Ada and to

require much less effort. As described in this section,

these expectations were not met during GRODY.

4.2 THE ADA APPROACH

4.2.1 ACCOUNTING METHODS FOR RECORDING PROGRESS

During the implementation of GRODY, managers needed to es-

tablish accounting methods that would enable them to track

progress carefully. GRODY's implementation schedule was

originally divided into four builds. (A build is an incre-

ment producing a partial working version of the system.)

The first, Build 0, included the specifications for the sys-

tem and the necessary utilities that were unavailable in

Ada. The second build consisted mainly of the user inter-

face, but also included some of the skeleton of the simula-

tor itself. The final two builds were combined to complete

the "meat" of the simulator. The plan for the build struc-

ture was formulated during the detailed design. The team

felt that the Build 0 should have been part of the design

phase, but on this project it was not.

4-1

5399

w

To track progress during a build, a system was used that

assigned a certain number of points to the completion of a

specific unit of code, and portions of the total points were

earned when certain milestones were reached. During the

design process, all the units of code that needed to be pro-

duced were identified, named, and marked with a number in

the design. These units of code were divided into two

types, A and B. Type A units were units with no procedural

code, such as a call-through unit or a specification for a

package, and type B units were algorithmic units. A-type

units were assigned a total of four points: two were earned

after a clean compile was achieved, and the remaining two

were earned after completion of code reading. B-type units

were assigned a total of I0 points. Three points were

earned for coding the prolog and PDL, three points were

earned after a clean compile, one point was earned after

code reading, and the final three points were earned after

unit testing. After the number of points was computed based

on the units that had been identified during design, a

growth factor of 20 percent of the to£ai number was added to

get the point total used'by the managers for tracking prog-

ress. The ratio of the points earned to the possible points

(including the 20 percent) gave the implementation status of

the project.

The manager's report included the following information:

• The unit's name and number in the design

• The unit's point status

• A flag indicating a unit that had been added after

CDR

• The unit's subsystem

• The file name of the unit

• A flag indicating whether the unit was a specifica-

tion or a body

5399

4-2

mm

m

D

R

m

i

mm

I

U

m

I

m

i

w

s

w

w

w

The unit's developer

A flag indicating a unit that was a library unit

The unit's type (A or B)

In addition, notation on the report indicated which units

were nested and which were tasks. The team found this col-

lection of information so useful that they plan to include

it in the system description document.

Figure 4-1 shows an example of the GRODY implementation sta-

tus report. It is interesting to note that near the end of

implementation, on June 26, 1987, the report listed a total

of 731 units that had been defined. Of these, 62 units, or

8.5 percent, had been deleted from the design at some time

during implementation, and 230 units, or 31.5 percent, had

been designed after the CDR. At this point the implementa-

tion status was recorded as 89 percent complete. Figure 4-2

shows the accompanying implementation status summary.

4.2.2 TRANSITION FROM DESIGN TO IMPLEMENTATION

The Ada team found that the transition from the design phase

to the code/unit-test phase was very easy. In general, the

team members commented that the object-oriented design was

easy to follow and that the code developed more quickly from

this type of design than from the design methods usually

used with FORTRAN. Some of the team members even felt that

it was easier to code directly from the object diagrams than

it was to use the PDL. The PDL for this project was not

written in Ada and was not entered into the machine during

the design process. PDL was entered as one of the first

steps during implementation and was found to be very time

consuming. Most of the team felt that the transition from

design into coding would have been even easier if the PDL

had been written in compilable Ada and entered into the

machine during the design phase.

5399

4-3

*** GRODY "°*

IMPLEMENTATION STATUS

COMPONENT TYPE:

A. TASK SPEC/PACKAGE SPEC OR BODY

B. TASK BODY OR PROCEDURE BODY

OBJECT

NUMBER

S
I
N
C
E

C
D
R

R
E
P
S

• = LIB UNIT

P B COMP
E U &
R I FILE
S L NAME
0 D
N S

COMP
TYPE

A B

2+2

3+3

P
R
O
L
O
G

P
D
L

C
O
M
P
I
L
E

MAX
PTS,

=4

+ 1 +

C
O
D
E

R
E
A
D

U
N
I
T

T
E
S
T

=10

C
O
N
F

me

m
lib

il

III

II

II

m

IBlll

USER I/F
1
1
1

11
11
113
11,1
112 .

UI-REQUESTI/F
113
1131
1132
1133
1134

1131
1132
11321
11321
11322
11323

DS 0 "UI S
DS 0 Ul B

+ DS 0 * UI TYPES

EB 0 * UR S
EB 0 UR B
EB 0 USERIS
EB 1 UR TOPLVL
EB 1 UR STDISP

EB 0 UR USERIB X
EB 0 PASURS X
EB 0 MODES X
EB o USERHS X
EB 0 ERLGS X

X
X
X

X
X
X

X
X

EB 1 UR PASURB X
EB 0 UR MODEB X
EB 0 ACTNS X
EB 1 UR ACTNB X
EB 1 UR ROUTER X
EB 1 UR EXITSM X

3
3

3

3
3
3

C
C
C

C
C
C

3 C
3 C

C
C
C
C
C

3 C oo
c 7-.
c

3 C _"
3 C o_03

3 C

m
I

Ill

!
m

II

!l

il

il

Ill

Figure 4-I. GRODY Implement at ion Status Report
I

5399

4-4 IBB

I

._=j=

m

= =

=.,m,,

=--

"'*GRODY'**

IMPLEMENTATIONSTATUS

SUMMARY

TOTAL POINTS

BUILD DEFINED DONE

0 1576 1490
1 2196 2190 7
2 970 734 _"
3 586 352 L9

TOTAL 5328 4766 (89%) mm

Figure 4-2.

DATE: 6/27/87

GRODY Implementation Status Summary

5399
4-5

Most of the team felt that Ada documentation w_s clearer

than the usual FORTRAN documentation and provided a good

method for describing functions. They also felt that the

design notebook was easy to understand. The Ada packages,

which corresponded to objects in the design, seemed to pro-

vide a natural way to view objects such as sensors or actua-

tors in the context of the whole system. This packaging of

objects seemed to make the development easier.

The one area where the object-oriented design was not easy

to translate into code was tasking. Several team members

felt that the design was not specific enough concerning the

interaction of the tasks which werespecified. (More infor-

mation on these problems is included in Sections 2.2.2 and

2.3.1.)

One developer commented that he felt Ada could be used

equally well without using object-oriented design methods.

He felt these design methodologies had actually hurt the

reuse potential of the system because they led to numerous

links between the subsystems. Since the GRODY development

was done in a top-down fashion, he felt that GRO-specific

assumptions were incorporated into the system at a higher

level than necessary. This approach resulted in easy adapt-

ability to the changes in the GRO requirements, but not to

future simulator projects. He suggested that some packages

should have a bottom-up development so they would be more

independent.

4.2.3 STAFFING CONSIDERATIONS

Work during the code/unit-test phase was allocated by as-

signing different team members certain packages to code.

This seemed to work very well and also facilitated the addi-

tion of staff once the project was underway.

5399

4-6

w

D

U

w

!m

L'

m

!

al

W

im

r-_

=,_

A

F_

w

Parallel code development was also easy and effective in

Ada. Contributing factors here were the early definition of

interfaces and the fact that the interfaces were much better

defined than they usually are in a FORTRAN development. In

addition, the package specifications, which were done early,

enforce consistency among modules

Developers who were on the project from the beginning felt

the design was very easy to understand and that it should be

easyto add staff after design or during implementation,

since interfaces were well defined andwork was neatly di-

vided into packages. New teammembers could begin implemen-

ting package bodies using existing specifications, without

being too concerned about affecting other team members as

long as they maintained the specified interface. However,

two of the team members who were not on the project from the

beginning had a slightly different view. One who joined the

project after the design phase felt that it was difficult to

get oriented on the project, even though he already knew

Ada, because he did not understand the design notation or

the ph_losophy behind it. Another developer who joined the

project during the implementation felt that the nested

structure of the system increased the difficulty of becoming

familiar with work that had already been done, because it

was more difficult to locate the procedures needed. (The

team also felt that this problem would make maintenance more

difficult.) However, the managers felt that staff could be

phased in and become productive more quickly than in a

FORTRAN project.

Another team member felt maintenance would be easier because

she had found it much easier to reacquaint herself with por-

tions of the code that had not been changed or examined for

some time. During the Ada implementation, she needed to do

some maintenance on a FORTRAN program she had previously

5399

4-7

written and found that remembering what she had done before

was much more difficult than when returning to the Ada im-

plementation.

Much more time was spent in meetings during implementation

than is usual during FORTRAN projects. During most FORTRAN

projects, the implementation of COMMON blocks and the inter-

faces between modules seem to be the usual subject of meet-

ings. During the Ada project, many meetings were necessary

to discuss the function of procedures, because the function-

alitY was designed at the package level and not at the pro-

cedure level. Developers were unclear as to the particular

details that needed to be implemented in their modules and

the details that were being implemented in other modules.

For example, there seemed to be misunderstandings concerning

details such as which module should perform certain initial-

izations, or which module should handle necessary conver-

sions. Integration was another point where more meetings

seemed to be necessary to clarify details.

Another possible reason for the increased number of meetings

during this project is newness of Ada to the team. Subjects

discussed at many of the meetings included the use of some

Ada features that did not work quite as the team expected or

that had been implemented incorrectly. These meetings were

also general information exchange sessions at which teams

members could benefit from each others' knowledge. For in-

stance, the team discussed better methods of implementing

certain types of functions, minimizing the amount of neces-

sary recompilation, and improving the use of the library

structure. Also, tools developed by team members were dis-

cussed for the benefit of the whole team. Various methods

of improving performance were also discussed at these meet-

ings. In some cases, several methods were suggested and one

team member would try to determine which method would

l

m

L!

wl

W

|J

,J

J

U

m

m

5399

4-8

m
i

l

actually produce the best performance and what the implemen-

tation impacts of the method would be.

The team was very enthusiastic about using Ada over the

course of the whole project. It has become a frequent oc-

currence to hear someone on the Ada team say, "Why don't you

do that project in Ada?" or "That problem would be so easy

to solve if you were coding in Ada!" It is also interesting

to note that over the 2-1/2 years of the project, not one

member has left the team.

4.2.4 ASSESSMENT OF ORIGINAL ADA PROJECT ESTIMATES

The SEL collects estimates at the beginning of each project,

including the amount and distribution of effort to complete

the project, the size of the system, the amount of reuse,

and the initial schedule. Figure 4-3 shows the estimates

made very early for both GRODY and GROSS and the actual fig-

ures collected near the end of the projects.

The estimates made for the FORTRAN project, GROSS, were

based on historical data collected by the SEL on other dy-

namics simulator projects. The estimates on size, reuse,

and schedule were generally close to the actual figures,

only the effort estimates were significantly different.

Effort totals for this project were affected by the unusu-

ally long acceptance-test period during which many enhance-

ments were incorporated into the system.

Since GRODY was a first-time Ada project there was no pre-

vious experience to provide a basis for estimation, so the

early estimates were based on FORTRAN experience with some

guesses about what effect Ada might have. Thus, the initial

estimates allocated a higher percentage of the effort for

design and a lower percentage for code and unit testing.

System testing was also estimated at a lower percentage.

These adjustments in effort required by phase were based

5399

4-9

c

m

l

EFFORTS ESTIMATES:

TOTAL MAN MONTHS EFFORT
EST.
175

% EFFORT-REQUIRE. ANAL. 15
% EFFORT-DESIGN 40
% EFFORT-CODE 25
% EFFORT-SYSTEM INTEGRATION 15
% EFFORT-OTHER 5

SIZE ESTIMATES:

TOTAL LINES CODE (INCL. COMMENTS)
TOTAL LINES_ODE (NO COMMENTS OR BLANKS
TOTAL COMPONENTS
% REUSED CODE

GRODY
ACTUAL

132.5"

SEL
EST. ACTUAL EST.

58 97.2 97.2

7.4 7.4 10 5.5 6
14.4 22.7 15 18.6 24
54.1 45.8 40 35.6 45
24.0 24.0 25 15.3 20
N.A. N.A. 5 24.9 5

* DOES NOT INCLUDE TRAINING
** BUILD 0 INCLUDED IN DESIGN

EFFORT, NOT IMPLEMENTATIO[

GRODY GROSS
EST. ACTUAL EST. ACTUAL

45,000 128,000 41,000 44,600
30,000 59,130 32.000 25,600

550 776 NO EST.
0 2 42 36

t
!IP

L_

wll

=

SCHEDULE ESTIMATES:

REQUIREMENTS ANALYSIS
DESIGN
CODE/UNIT TEST
SYSTEM INTEG.FFEST
PROJECT COMPLETE

GRODY GROSS
EST. ACTUAL EST. ACTUAL

COMPLETION COMPLETION COMPLETION COMPLETION
DATE DATE DATE DATE

06/29/85 09/07/85 03/15/85 02/10/85 ot,?,
02/01/86 03115/86 06/07/85 06/08/85 _'
07105186 06/27187 12/31/85 12/28/85

(5
10/04/86 06/01/88 04/31/86 05/03/86 m

O1
12/06/86 NA 09/30/86 05/31/87

U3

W

:z

Figure 4-3. Initial

Figures

Proj ect Estimates Versus Actual
w

5399

4-I0 I

D

r--)

on general expectations in the Ada community at the time of

estimation. The actual percentages of effort by phase were

closer to the usual percentages of effort for FORTRAN proj-

ects. One reason for this is that much of the design work

actually was done in the implementation phase, so the re-

corded figures for the design phase do not accurately repre-

sent the'design work done on the project. The team felt

that the original estimate of 40 percent of effort for de-

sign would probably have been reasonable if the design ef-

fort had really been completed during this phase, but effort

numbers including the design done in Build 0 still were

lower than expected. The team was probably most surprised

at the percentage of effort required to complete system

testing. They had expected to use much less effort to com-

plete system testing than on the FORTRAN project; instead,

they expended more. Total effort to complete the Ada proj-

ect was expected to be almost three times that expended for

a FORTRAN project. This high estimate was intended to allow

for the need to learn Ada during development and to compen-

sate for the effort that the Ada team planned to devote to

experimentation with methodologies and so forth. In fact,

the estimate was only 20 percent higher than the effort ac-

tually required to complete the project.

At the beginning of the project, the size of the Ada system

was estimated to be the same as a FORTRAN system, but as we

have already seen, it turned out to be about 2-1/2 times

larger. (See Section 4.3.3 for some of the reasons why the

Ada system was so large.)

Schedule estimates had the largest deviations between esti-

mates and reality. For example, code and unit testing was

expected to take about 5 months and actually took 15 months.

Similarly, system integration and testing was estimated to

take 3 months and took 13 months. Probably the two most

5399

4-11

important factors affecting the schedule are the learning

curve involved with a new language and the experimental na-

ture of the project. Unexpected problems arose during both

implementation and testing and it took time for the team to

learn how to solve these problems. The experimental nature

of the project allowed more time for the developers to make

"enhancements or rework code to improve its general quality.

In addition, the developers were not devoted full time to

this project and higher priority projects made heavy demands

on their time.

4.3 COMpARISON 0FADAVERSUS FORTRAN

4.3.1 GROWTH HISTORY

During the course of the two projects, information was col-

lected weekly on the size of the source code in the develop-

ment libraries. Figure 4-4 shows the weekly history of the

source code growth for both projects and demonstrates that

there were significant differences in the projects. The Ada

project shows a smooth increase in the amount of source code

from the beginning of coding, first in steps up through

about week 30, which corresponds to the final release, and

then as a gradual increase until coding was completed,

around week 60.

The FORTRAN growth pattern is much more unpredictable, for

several reasons. First, a considerable amount of reusable

code was added to the source library in a very short period

at the beginning of the project, resulting in a rapid early

growth of the library. The Ada library did not show this

early rapid growth because there was no significant amount

of reusable code to be added. Between weeks 20 and 23, the

FORTRAN library actually decreased by more than 15K SLOC.

This appears to have been caused by the combining of two

major functions that had been developed separately up to

this point, and that contained some common source code that

needed to be deleted.

4-12

5399

I

I

f

u

V

I

71

im

I

w

z

z

I

i

L%

v

!

!

I

I

#

!

I
!

I

I
I

%

I
%

%

8 8 8 ,9.°8 8 _ _

3000 30UN08 -I0 83N17_0 SONVSI7OH1

5399

4-13

,3
0

U

U

0

.I-3

0

I

D_
.M

4.3.2 CHANGE HISTORY

Another interesting metric that has been recorded weekly for

both projects is the change history, or the number of

changes made to each source library per week. For this pur-

pose changes have been defined as any additions, deletions,

or modifications made to a component. Figure 4-5 shows a

relatively smooth curve for Ada with no erratic changes from

week to week. Figures 4-6 and 4-7 show normalized growth

history using two different normalization factors: number

of components and SLOC. These figures emphasize the differ-

ence between the FORTRAN and Ada growth patterns. The Ada

growth appears to be much smoother and much more predictable

than the FORTRAN.

4.3.3 SIZE

At the beginning of this project, it was estimated that the

Ada system might be about the same size as the FORTRAN sys-

tem. Actually, the team was not sure what to expect for the

completed size. There had been some reports of redeveloped

Ada systems (from FORTRAN or COBOL) that were significantly

smaller in number of lines of code (see Reference i), but it

was uncertain whether this would be true for this project.

Actually, the Ada project is significantly larger than the

FORTRAN project. As Table 4-1 shows, the Ada project

yielded 128,000 SLOC, compared with 44,662 SLOC for the

FORTRAN project. These figures are a little misleading,

since the Ada line count includes 33,250 blank lines in-

serted for readability. The Ada line count also includes

35,620 lines of comments, compared with 19,000 lines of com-

ments in the FORTRAN tount. The Ada project had

59,130 lines of executable code compared with 25,100 for the

FORTRAN project. Another way of viewing the Ada executable

code is to count multiple lines that contain one Ada con-

struct as one line (or to count by semicolons). To compare

5399

4-14

_I

J

m

m

w

l

r_

.m

!

u

w

m

mm

5399

C-(SZ)D_CS

..... 0 d 0 d

S3ONVHO _0 S(]NVSDOHI

0

4-15

0
U

U

0

0

0

I

0

t_

'_ ',t. _ _ e_ ew ,- ,.,.

o

o

gJ.N3NC_dMO0:R)U3BMnN_3ONVHO -_0_BBMnN

mm

m

; I

4m,

.5399

4_16
m

w

m

i

L--

V

m

=

Y

r_

0

I !

! n

I I I I I I

0 0 0 0 0 0

3000 dO 83N173OUNOS/S3ONVHO._O613B_NN

O
t_

4-4
o

v_

r.)
6_

o

o

q)
t_

t.)

,C

o

t_

I

5399

4-17

llw

w

v

itlB

Table 4-I. Project Size Comparisons

m

FORTRAN ADA

TOTAL LINES OF CODE

TOTAL COMMENTS

BLANK LINES

EXECUTABLE LINE (INCLUDING
TYPE STATEMENTS)

EXECUTABLE LINES (NOT INCLUDING
TYPE STATEMENTS)

REUSED LINES

EXECUTABLE STATEMENTS

AVERAGE COMPONENT SIZE

LOAD MODULE

44,0O0 SLOC

19,000

MINIMAL

25,100

22,500

16,000(36%)

22,300

135

953 512-BY'rE BLOCKS
,m

128,000 SLOC

35,620

33,250

59,130

42,150

2,50o(2%)

22,840

2O8

2300 512-BYTE BLOCKS

=,
A
U3
Cq

(.9
O_
03
03
U3

m

i

v

w

_P

Hm

J

5399

4-18 g

I

L_

w

this figure with the FORTRAN, we would also need to count

FORTRAN statements continued over more than one line as just

one line. This yields a count of 22,840 semicolons (state-

ments and declarations) for the Ada project and 22,300 state-

ments for the FORTRAN.

The team felt there were several reasons why the Ada project

was larger than the FORTRAN project. First, since they were

not constrained by schedule pressure as the FORTRAN team

was, they took the time to develop a system with increased

functionality--more of the "nice to have, but not required"

features. This resulted in a much more sophisticated user

interface of approximately 40K SLOC, nearly four times the

size of the FORTRAN interface. Second, the Ada language

itself requires more code to write such constructs as pack-

age specifications, declarations, and so forth. Third, the

A_ Style Guide required that certain constructs be spread

over several lines for readability. Blank lines of code

were inserted for formatting, and more extensive prologs

were entered for the Ada code.

Since Ada is still a relatively new language, many of the

supporting packages and utilities available in FORTRAN are

not available in Ada. Utilities considered standard system

routines in FORTRAN were not available for Ada and had to be

written by the team. These included such procedures and

functions as trigonometric functions, matrix multiply rou-

tines, minimum or maximum values, and array definition and

manipulation.

A final factor that contributed to the larger size of this

particular Ada system is the use of call-throughs, which

were discussed earlier in the document (see Section 2.3.1.1).

These call-throughs were implemented as a method of strictly

representing the object-oriented design directly in the code

so that every object in the design had a corresponding

4-19

5399

object in the code. The team decided that this type of one-

to-one correspondence was really not necessary and, in fact,

caused additional code that in turn necessitated more com-

pilation and increased testing complexity. The team felt

that when making an estimate for future Ada systems compared

with FORTRAN systems, they would expect the Ada system to be

about twice as large as the comparable FORTRAN system.

Another interesting way to compare the size of the two proj-

ects is to examine the size of the load modules for each.

This also shows the Ada system to be larger--occupying 2,300

512-byte blocks, compared to 953 512-byte blocks for the

FORTRAN load module.

4.3.4 EFFORT

Table 4-2 shows the staff-hours of effort by phase on both

projects. The figures in this table were collected by add-

ing the total number of hours recorded during each phase

using the phase dates listed in Table 4-3. Thus, the number

of hours spent on design looks low since some of the activ-

ity during the implementation phase was actually design.

Similarly, there is some overlap in activities during the

end of unit testing and the beginning of system testing.

Probably a better idea of £he effort distribution can be

obtained by looking at Tables 4-4 and 4-5, which show the

staff hours spent on each phase activity, regardless of the

phase _n which the hours actually occurred. Hours spent on

design are recorded as design hours whether they occurred

during the design phase, implementation phase, or testing

phase. The difference between Tables 4-4 and 4-5 is in the

hours recorded as "other," which include activities such as

documentation, attending meetings, and management tasks.

Table 4-5 includes these "other" hours as part of the phase

activity. The team had initially expected that the effort

required during the Ada design phase would be much greater

v

mm

m

J

mm

J

m

m

I

l

5399

4-20

m

Table 4-2. Project Effort Comparisons by Phase Dates

PHASE

TRAINING
REQUIREMENTS ANALYSIS
DESIGN
CODE/rEST
SYSTEM TEST
ACCEPTANCE TEST

STAFF-HOURSt

FORTRAN

o
849

2830
5397

2315
3775

ADA

2345
1541 ""
2987

11174
4968

NA

DURATION IN MONTHS

TOTAL 15166 23015

" OFFICIAL END OF CODE/UNIT TEST USED, BUT ACTUAL UNIT TESTING

FORTRAN ADA

0 6.O
1.5 2.2
4.0 6.O
6.5 15.0"
4.0 11.0

13.0 NA

29.0 40.2

OVERLAPPED SYSTEM TESTING AND CONTINUTED FOR ANOTHER 4 MONTHS.

t DOES NOT INCLUDE SUPPORT HOURS.

*" APPROXIMATELY 1000 HOURS OF THIS REQUIREMENTS ANALYSIS EFFORT
OCCURRED DURING THE TRAINING PERIOD.

O

_3

5399

4-21

!

z

m

m

n
m

M

Table 4-3. Phase Dates

TRAINING
REQUIREMENTS ANALYSIS
DESIGN
CODE/UNIT TEST
SYSTEM TEST
ACCEPTANCE TEST

FORTRAN

START END

NA NA
01/01/85 02/10185
02/10/85 06108t85
06/08/85 12/28/85
12/28/85 05/03/86
05103/86 05/31/87

ADA

START

01/01/85
06/29/85
09/07/85
03/15186
06/27187

NA

END

06/29/85
09107185
03115/86
06/27187"
06101188

NA

OFFICIAL END OF CODE/UNIT TEST PHASE, BUT SOME UNITS WERE NOT UNIT
TESTED UNTIL 10/31/87: -

END OF BUILD 0 WAS 10/12/86

i
A
LO

m

m

m

m

i

mm

i

i

W

5399

4-22

m

J

Table 4-4 ° Project Effort Comparisons by Activity,

Excluding Hours Recorded as "Other"

PHASE

TRAINING
REQUIREMENTS ANALYSIS
DESIGN
CODE/TEST
SYSTEM TEST
ACCEPTANCE TEST

TOTAL

TOTAL (REQUIREMENTS
ANALYSIS ----e,.
SYSTEM TEST

STAFF-HOURS

FORTRAN ADA
i

0 2436
1320 498
2223 5678
4252 6645
1562 2724
2557 NA

11914* 17981"

9357 15545

PERCENT OF TOTAL
ACTIVITY

PERCENT ACTIVITY
REQUIREMENTS
ANALYSIS
SYSTEM TEST

FORTRAN

NA
14.1
23.8
45.4
16.7
NA

FORTRAN ADA
u

0 13.5
11.1 2.7
18.6 31.6
35.7 37.0
13.1 15.2
21.5 NA

100.0 100.0

100.0

ADA

NA
3.2

36.5
42.8
17.5
NA

100.0

04
w-

O4
v

THESE TOTALS ONLY REFLECT THE HOURS RECORDED IN THE SEL DATA BASE WHERE TRAINING HOURS
FOR GRODY WERE DERNED AS THOSE HOURS RECORDED AS "OTHER" DURING THE PRE-PROJECT
PHASE. THE REQUIREMENTS ANALYSIS HOURS WERE THOSE RECORDED AS PREDESIGN; THE DESIGN
HOURS WERE THOSE RECORDED AS CREATE DESIGN OR READ AND REVIEW DESIGN; THE CODE AND
UNIT TEST HOURS WERE THOSE RECORDED AS WRITE CODE, READ AND REVIEW CODE, TEST CODE, AND
DEBUG CODE; THE SYSTEM TEST HOURS WERE THOSE RECORDED AS INTEGRATION TEST HOURS; AND
THE ACCEPTANCE TEST HOURS FOR GROS_ WERE THOSE HOURS RECORDED AS "OTHER" DURING THE
ACCEPTANCE TEST PHASE. HOURS RECORDED AS "OTHER," SUCH AS MANAGEMENT_ DOCUMENTATION,
ATTENDING MEETINGS, ETC., WERE NOT INCLUDED.

w

5399

4-23

J

V

J

J

Table 4-5. Project Effort Comparisons by Activity,

Including Hours Recorded as "Other"

J

ll
m

PHASE

TRAINING
REQUIREMENTS ANALYSIS
DESIGN
CODE/TEST
SYSTEM TEST
ACCEPTANCE TEST

r

TOTAL

TOTAL (REQUIREMENTS
ANALYSIS THROUGH

SYSTEM TEST)

STAFF-HOURS

FORTRAN ADA

0 2436
1841 680
3361 6505
5443 9671
1962 3704
2557 " "NA

15164 22996

12607 20560

PERCENT OF TOTAL
ACTIVITY

PERCENT ACTIVITY
REQUIREMENTS
ANALYSIS "_
SYSTEM TEST

FORTRAN

NA
14.6
26.7
43.2
15.5
NA

FORTRAN ADA
= i

0 10.6
12.1 3.0
22.2 28.3
35.9 42.0
12,9 16.1
16,9 NA

100.0 100.0

100,0

ADA

NA
3.3

31.7
47.0
18.O
NA

100.0
v
(D

im

z
Bim

BB

m

roll

IB

I "

5399

4-24 w

i

than that required in the FORTRAN project, and that the im-

plementation and testing phases would then be much shorter.

The table shows that the design effort of the Ada team was

about the same as that of the FORTRAN team, and that the

implementation effort was considerably greater than

expected--closer to the effort of the FORTRAN team.

Several factors could be responsible for this difference.

First, as mentioned in the lessons-learned design document

(Reference 2), the CDR marking the formal end of the design

phase occurred at a somewhat arbitrary point in the design,

and many of the team members felt that the actual design

work was not complete. As noted in Section 2.2.2, several

entire functions were either desfgned or redesigned after

the CDR. PDL was entered into the machine during a 3-month

period in early implementation; normally, in a FORTRAN de-

velopment, this would be accomplished during the design

phase. Obviously, there was not a clear dividing line be-

tween the design phase and the implementation phase for the

Ada project. This raises the question of the appropriate

points for development milestones, such as the CDR, in an

Ada development. A better point for the CDR may be the com-

pletion of package specifications and type declarations,

allowing the use of the Ada compiler to check the design

consistency.

Another factor in the effort difference is the size and

functionality of the Ada system. It would be expected that

it would take longer to write more lines of code and to pro-

duce modules that have more capability. In addition, the

FORTRAN team reused about 36 percent of their code from pre-

vious FORTRAN systems, while the Ada team had no reusable

Ada code, and the reused FORTRAN routines made up only about

2 percent of their code.

5399

4-25

4.3.5 PRODUCTIVITY/COST

There are many ways to compute productivity. In the SEL,

the calculation is usually made by dividing the total number

of SLOC developed by the number of hours spent on the proj-

ect. The number of hours is carefully recorded on weekly

forms and includes the hours spent on all phases of the

project, beginning with the requirements analysis and ending

with the completion of acceptance testing. In order to com-

pare the FORTRAN and Ada projects, the calculations were

made using the number of hours spent on each project from

requirements analysis to the completion of system testing,

since acceptance testing has not yet been completed for the

Ada project. As shown in Table 4-6, using the total number

of SLOC for each project, productivity was 3.9 SLOC/hour for

the FORTRAN project and 6.2 SLOC/hour for the Ada project.

Because the Ada code included many blank lines of code that

were not included in the FORTRAN line count, the Ada was

recomputed excluding the blank lines, resulting in a produc-

tivity of 4.6 SLOC/hour. When the calculation considers the

effort required to develop only the new lines of code and

not the reusable code, the figures are 2.5 SLOC/hour for the

FORTRAN, and 6.1 SLOC/hour for the Ada with blanks and

4.5 SLOC/hour without blanks. This would seem to imply that

the Ada is more productive, but it took many more lines of

code to develop the Ada system and the style guide caused

many constructs to be spread over many lines.

Using only the number of executable lines of code, the prod-

uctivity figure was 1.97 SLOC/hour for the FORTRAN project

and 2.0 SLOC/hour for the Ada project. Because many of the

Ada constructs use more than one line, productivity wad re-

computed for the number of executable statements (or semi-

colons) in the Ada project. Similarly, for the FORTRAN

project, statements and their continuations were counted as

one executable statement. This resulted in a productivity

4-26

5399

w

l

i

w

l

m
m

w

m

D

m
m

l

i

Im

W

i

=

w

v

Table 4-6. Productivity Comparisons

FORTRAN ADA

LINES OF CODE USED FOR
COMPUTATION

TOTAL LINES OF CODE

TOTAL LINES OF CODE
EXCLUDING BLANKS

NEW LINES OF CODE

NEW LINES OF CODE
EXCLUDING BLANKS

EXECUTABLE LINES OF CODE

EXECUTABLE STATEMENTS

EXECUTABLE NEW STATEMENTS

PRODUCTIVITY
SLOC/HR

3.9

3,9

2.5

2.5

1.97

1.95

1.25

PRODUCTIVITY
SLOC/HR

6.2

4.6

6.1

4.5

2.0

1.10

1.08

',d"
,l---

U3

04

i

.,....-

5399

4-27

of 1.95 SLOC/hour for the FORTRANproject and i.i0 SLOC/hour

for the Ada project. Looking at the number of executable
new statements in the FORTRANproject yields a figure of

1.25 SLOC/hour compared to 1.08 SLOC/hour for the Ada proj-
ect. These calculations would make the FORTRANlook more

productive.

Perhaps a better way of vlewing the productivity problem is

to examine it from the standpoint of cost to produce the

product. The total cost of the FORTRANproject from re-

quirements analysis through acceptance testing was about
8.1 man-years of effort. The Ada project cost, using actual

figures from requirements analysis through system testing

and estimating the acceptance testing cost, is around
12 man-years of effort. Taking into consideration the per-

centage of reused code in the FORTRANproject and assuming

that all the code generated was new code, it would have

taken about 11.5 man-years of effort to develop the FORTRAN
system. This makes the cost of developing the two systems

roughly the same, especially when we consider that the Ada

project was a "first-time" project and that it had slightly
more functionality than the FORTRANproject.

4.3.6 SCHEDULE

Several team members commented that because the Ada project

was "just an experiment and not the real, operational ver-
sion," there was no sense of urgency to finish the project

in any particular time frame and the deadlines kept slip-

ping. It is difficult to determine how much of this sched-

ule problem is really Ada-related and how much is caused by
the lack of firmdeadlines. The one firm deadline that was

established--the June 30 deadline to finish coding--was

met. Another team member commented that many of the team

members were dividing their time among other tasks and it

appeared that management tended to assign higher priority to

other tasks with more urgent deadlines.

4-28

5399

m

w

m

g

=_

w

m

m

w

mm

g

m

m

i

U

i

m

lid

w

w

The learning curve was another factor that seems to have

affected the Ada schedule. Even though the team had exten-

sive training before the project started, in many areas a

lack of experience with Ada caused delays or problems in

implementation and integration testing. As previously dis-

cussed, some of these problems included misunderstandings

about how to use Ada features, immaturity of tools, a lack

of intuition when debugging Ada code, and a general lack of

experience with tasking.

4.3.7 ERROR/CHANGE STATISTICS

Table 4-7 shows statistics on the number of errors and

changes that occurred during the implementation and testing

phases of GROSS and GRODY. (For the tables in this section,

a date of October 31, 1987, was used for end of GRODY imple-

mentation, because unit testing for a significant portion of

the system was done during this period.) Several interest-

ing observations can be made from these statistics. First,

it is significant to note that both the error rate and the

change rate are almost identical for the two projects. The

change rate for GR06S, computed by using the total number of

changes divided by the source lines of code, is 58 changes/

10,000 SLOC, while the change rate of GRODY (excluding

blanks from the number of source ilnes of code used in the

computation) is 56 changes/10,000 SLOC. Similarly, the er-

ror rate for GROSS is 23.3 errors/10,000 SLOC, while GRODY

has an error rate of 24 errors/10,000 SLOC. Second, the

percentage of total errors compared tothe number of total

changes is roughly the s_me for the two projects. Finally,

a much higher percentage of both changes and errors occurred

in the implementation phase of GRODY (that is, earlier in

the process) than in GROSS. A higher percentage of the er-

ror corrections and changes occurred during the testing

phase in GROSS. This seems to support the expectation that

errors in Ada will be discovered earlier.

4-29

5399

I

m

= =

m

I

I

Table 4-7. Comparison of Errors and Changes in FORTRAN and

Ada During Implementation and Testing

IMPLEMENTATION
TESTING
TOTAL.

IMPLEMENTATION

TESTING
TOTAL

FORTRAN

NUMBER OF
CHANGES

148
113
261

NUMBER OF
ERRORS

i ill

57
47

104

PERCENT

56%
44%

t 00%

PERCENT

55%
45%

100%

ADA

NUMBER OF

CHANGES

426
112
538

NUMBER OF
ERRORS

165
63

228

PERCENT

79%
21%

100%

PERCENT

72%
28%

100%

L_

1

u9

i

m

I

i

m

;i

Im

m

W

i

I

5399
4-30

= __
I

L--

=

I

=

Figures 4-8, 4-9, and 4-10 show the types of changes re-

corded for both the FORTRAN and the Ada projects during the

implementation phase and the testing phase, and the totals

for both phases, respectively. It is interesting to note

that roughly the same percentage of changes in each project,

both overall and during implementation, were due to error

corrections. Percentages of some of the other types of er-

rors differ considerably between the two projects, but the

differences may be caused by individual project differences

and not the influence of the implementation language. For

example, a much higher percentage of the changes in the Ada

project were implemented to improve the user services or the

clarity of the code, or to enhance the future ease of main-

tenance. A very low percentage of the FORTRAN changes be-

longed to these types. One obvious reason for this is that

the Ada project had more time to enhance and refine the user

interface. Some of the changes made to improve clarity or

ease future maintenance took advantage of the Ada team's

increasing knowledge as the project progressed. A much

higher percentage of the changes in the FORTRAN project were

made to implement requirements changes. This is an expected

result, considering that the FORTRAN project was developed

slightly earlier when requirements were less stable.

Similarly, we notice that more effort was spent on planned

enhancements in the FORTRAN project, especially during the

implementation phase. Several factors may have influenced

this. First, the projects were on different schedules, with

the FORTRAN development occurring first. Hence, the re-

quirements team's view of the desired FORTRAN system may not

have been fully developed at the beginning of implementation,

but evolved as the system developed. Another possibility is

that the more extensive design efforts during the Ada project

may have forced an earlier view of the desired system so

5399

4-31

IBm=

w

3.76%

11.27%

18.31_

1.17%

2.11%

10.56%

38.73%
[] ERR CORRECTION
[] PLANED ENHANCE
[] IMPLEMENT REQUEST
[] IMPROVE CLARITY

I"1 IMPROVE SERVICE
[] DEBUC.VINS/DEL

• OPTIMIZE
• ADAPT ENVIRON

[] OTHER CHANGE

(D
,ira

!A
tn

11
i

w

W

U

I

Im

'roll

4.73%

4.73%

g

26.35%

Figure 4-8.

[] ERR CORRECTION
• PLANED ENHANCE

• IMPLEMENT REQUEST
IMPROVE CLARITY

[] IMPROVE SERVICE
• DEBUGqNS/DEE

0% [] OPTIMIZE
0% [] ADAPT ENVIRON

0% [] OTHER CHANGE

20.95%

r,.

"T
A

_3
v

GRODY/GROSS Change Type--Implementation

m

m

W

J

g

5399

4-32

v

6_6%

w-

16.96%

8.93%

43,36%

6.25%

347%

0.88%
3.54% 0.880/,

0.88%

Figure 4-9.

[] ERR CORRECTION
[] PLANED ENHANCE
[] IMPLEMENT REQUEST

[] IMPROVE CLARIFY

[] IMPROVE SERVICE
[] DEBUG/INS/DEL
W oP'nM=E

0% [] ADAPT ENVIRONMENT
[] OTHER CHANGE

41.59%

[] ERR CORRECTION

[] PLANED ENHANCEMENT
[] IMPLEMENT REQUEST
[] IMPROVE CLARITY

1["3 IMPROVE SERVICE
[] DEBUG/IN,._DEL

0% [] OPTIMIZE
ADAPT ENVIRONMENT

[] OTHER CHANGE

1.77%

GRODY/GROSS Change Type--Test

ao

o_
03
u_

o_

u3

cn

4-33
5399

4.28%

1.67% 1.12%

5.20%

Im

91

16.36%

3.O7%

5.75%

9.67% 6.88%

0% 0.38%

4.21% 0.38%

42.38%

[] ERFI CORRECTION
[] PLANED ENHANCE
[] _APLEIVlENT REQUES"

[] IMPROVE CLARITY
r'I IMPROVE SERVICE
I_1 DEBUGANS/DEL

[] OFnMBE
[] ADAPT ENVIRON

[] OTHER_

_L

in

g

1

z

lm

I

3_72%

12.64%

39.85%

[] ERR CORRECTION
[] PLANED ENHANCE
[] IMPLEMENT REQ
P')J IMPROVE CLARITY
l"1 iMPROVE SERVICE

• [] DEBUG/INS/DEL

0%B OPTIMIZE
0.38% _ ADAPT ENVIRON
0.,3_,171 OTHER CHANGE

A

v

I•

IB

g

I

Figure 4-10. GROSS/GRODY Change Type--Total Project
J

IB

5399

4-34

that features that were added to the FORTRAN system as en-

hancements may have been designed into the Ada system. Fi-

nally, we can see that more of the changes in the Ada system

were made for the purposes of optimization. This can proba-

bly be attributed to the newness of Ada and the lack of ex-

perience with it. The Ada developers were not yet familiar

with the optimal methods for implementing certain features

in Ada and found that they needed to make change s to improve

performance.

Figures 4-11, 4-12, and 4-13 show the sources of errors

found in both the FORTRAN and the Ada projects during the

implementation phase and the testing phase, and the totals,

respectively. Coding errors make up the highest percentage

of errors in both the FORTRAN and the Ada systems. A high

percentage of errors is attributed to the design of the Ada

system. This is not suprising, since the Ada design was

totally new while the FORTRAN design was a proven, reused

design developed and refined over many similar projects. A

significant number of errors in the Ada system were caused

by previous changes. These errors can probably be attrib-

uted to the team's inexperience with Ada.

Figures 4-14, 4-15, and 4-16 show the classes of errors re-

corded for the two projects during the implementation phase

and the testing phase, and the combined totals, respec-

tively. Note that the percentages of the different classes

of errors found in both the Ada and the FORTRAN systems were

very similar. This would imply that the distribution of

errors among the classes of errors is fairly language inde-

pendent. The majority of errors in all classes for the Ada

project were discovered at an earlier phase than those for

the FORTRAN project. This is especially noticeable for in - ;

itialization and external interface errors, which are virtu-

ally nonexistent in the Ada testing phase. One result in

the error statistics that was surprising to the Ada team is

4-35

......... 5399

v

II

3.64%

12.12%

1.82% qlW

'lib

26.67_

55.76%

[] CODE
[] DESIGN
[] FUNCTIONALSPEC
[] PREVIOUSCHANGE
1"1 REQUIREMENTS

U3

_3
u_

g

IIBII

w

Figure 4-11.

1.75%

0%

• CODE
• DESK_N
• FUNCTIONALSPEC

0% [] PREVIOUSCHANGE
rl REQUIREMENTS

89.47%

|

In

O_

GRODY/GROSS Error Source--Implementation

m

i

J

m

m

U

5399

4-36 W

f

v

3.17%

19.05%

4.76%

11.11%

[] CODE
• DESIGN

• FUNCTIONAL SPEC
[] PREVIOUS CHANGE
[] REQUIREMENTS

?_.

O_
03

__=

L

5399

2.13%
4.26%

2.13%
2.13%

Figure 4-12.

[] CODE

[] DESIGN
[] FUNCTIONAL SPEC
I_1 PREVIOUS CHANGE

[] REQUIREMENTS

89.36%

GRODY/GROSS Error Source--Test

4-37

2.19%

14.04%

1.92%
1.92%

m CODE
El DESIGN

m FUNCllONAL SPEC
_1 PREVIOUS CHANGE
[] REQUIREMENTS

S-"/;;4_Y,,.....

O)
U)

II

..II

IIi

Ii

ilm

5399

• CODE
ml oE_ _-
m _CiI_SpEC

[] REOUI_M_Nrs

GRODY/CROSS Error Source--Total Project

4-38

W

w

II

Ill

w

II

8.48%

L

23.03"h

6.06% 16.97%

27.27% • COMPUTATIONAL
• DATA VALUF_JSTR

• INITIALIZATION
• INTERFACEEXT
[] INTERFACE INT

• LOGIC/CONTROL

tn

1053% 8.77%

;- 7

,r....-

Figure 4-14.

24.56% • COMPUTATIONAL
• DATA VALUE/STR

• INITIALIZATION
[] INTERFACE EXT
[] INTERFACE INT

• LOGIC/CONTROL

7.02%

7.02%

,DO

v

GRODY/GROSS Error Class--Implementation

w

7

5399

4-39

Ill

26.98%

m COMPUTATIONAL
• DATA VALUE/STR
[] INITIALIZATION

INTERFACE EXT
[] INTERFACE INT

• LOGIC'CONTROL

31.75%
A
tn

Ln

w

Im

I

m

N

17.02%
m

12.77%

4.26%

23.40%

21,28%

• COMPUTATIONAL

[] DATA VALUE/STR
[] INITIALIZATION
[] INTERFACE EXT
[] INTERFACE INT

• LOGICtCONTROL

v
o

W

IIW

qm

W

Figure 4-15. GRODY/GROSS Error Class--Test Im

5399

4-40

m

20.61%

4.82%

12.28%

12.72%

28.51%

[] COMPUTATIONAL
[] DATA VALUEJSTR
[] INITIALIZATION

[] INTERFACE EXT
[] INTERFACE INT
[] LOGIC/CONTROL

O

tn

O_
tn

w

28.85_

15.38%

6.77%

12.50%

14.42%

[] COMPUTATIONAL
23.08% [] DATA VALUFJSTR

[] INITU_L_ATION
[] INTERFACE EXT

[] INTERFACE INT
[] LOGIC/CONTROL

O3

U')

O_
CO
t4")

5399

Figure 4-16. GRODY/GROSS Error Class--Total Project

4-41

the number of interface errors recorded. One possible rea-

son for this is that in Ada the interfaces are defined when

the specifications are developed, which occurs very early in

the implementation. In GRODY, these specifications were

compiled separately and then put under configuration
control--even before the body of the unit was coded, in some

cases. This meant that any subsequent changes had to be
recorded. In the case of the FORTRANdevelopment, where

there are no specifications, nothing would be placed in the

configuration library until the entire routine was unit
tested, so no interface problems found or changes made up to

this point were recorded. There were also more initializa-

tion errors in the Ada system than the team expected. Many
of these initialization errors can probably be attributed to

the teams' confusion over the exact function of procedure

units and misunderstandings concerning the responsibility
for initialization.

Figures 4-17, 4-18, and 4-19 show the length of time it took
to isolate errors in both the FORTRANand the Ada projects,

and Figures 4-20, 4-21, and 4-22 show the effort required to

complete the changes to correct those errors. It took
longer to isolate errors in the Ada system, especially dur-

ing implementation. Ninety-three percent of the FORTRAN
errors were isolated in less than an hour, compared to

59 percent of the Ada errors. Several possible reasons have

been suggested for this. First, the FORTRANdevelopers were

very experienced in that language and had a great deal of
intuition to aid them in locating errors. Another possibil-

ity is that the Ada compiler may have already found most of
the "very easy" errors in the Ada code, leaving only the
more difficult ones for the developers to correct. Overall,

the vast majority of errors in both languages (94 to 96 per-

cent) were discovered quickly with less than 1 day's ef-

fort. The effort to correct the errors was slightly less

5399

4-42

mm

g

m

U
I

J

m

Im

w

J

=,.._.

=

L.-_'

'r_

=

=

35.15%

Figure 4-17.

0.61%

1.21%

3.64"/o

59.39=/,,

[] <1 HR
[] 1 HR-1 DAY
[] 1-3 DAYS

[] >3 DAYS
[] N DAYS

O4

03

7.02% 0%

[] <1 HR
[] 1 HR-1 DAY

(7'/0 [] 1-3 DAYS

0% [] >3 DAYS

0% [] N DAYS

92.98%

I.'3

O

CB

GRODY/GROSS Effort To Isolate (Errors Only)--

Implementation

5399

4-43

w

I

7.94%

1.59%
0% =

38.10%

6.38%

2.13%
0%

52.38%

[] <1 HR

[] 1 HR-1 DAY
[] 1-3 DAYS

[] >3 DAYS
[] N DAYS

O4

i

i

W

J

Ill

lip

23._
-- " -_ <1HR

[] 1 HR-1 DAY

[] 1-3 DAYS
[] >3 DAYS
[] N DAYS

C_

llJ

Figure 4-18. GRODY/GROSS Effort To Isolate (Errors Only)--
Test W

5399

4-44

m

0.44%
1.32%

4.82%

35.96%

57,46%

[] <1 HR
[] 1 HR-1 DAY

[] 1-3 DAYS
[] >3 DAYS

[] N DAYS

¢0
o3

Lf3
04

O_

w

14.42%

0.96%
2.88% 0%

81.73%

II <1 HR
[] 1 HR-1 DAY
[] 1-3 DAYS

0,96% [] >3 DAYS
0% [] N DAYS

03

t.n
04

Figure 4-19. GRODY/GROSS Effort To Isolate (Errors Only)--

Total Project

5399

4-45

wi

w

L_

im

0.61%
0.61%

2.42%
mm

w

28.48%
[] <1 HR
[] 1 HR-1 DAY

[] 1-3 DAYS

[] >3 DAYS
[] N DAYS

67.88% U3

O
O1
03

g

8.77%

1.75%
1.7S%

I

lira

Figure 4-20.

[] <1 HR

[] 1 HR-1 DAY
[] 1-3 DAYS

0%!_1 >3 DAYS
[] N DAYS

87,72%

IJ3

A
U3
OJ

GRODY/GROSS Effort To Complete (Errors Only)--

Implementation

mm

m

W

5399

4-46 im

m

1.59%
3.17% 0%

15.87%.

79.37%

[] <1 HR
[] 1HR-1 DAY
[] 1-3 DAYS

[] >3 DAYS
[] N DAYS

O_

.=.=.,
2.13=/o

0%

10.64%

[] <1 HR
[] 1 HR-1 DAY

[] 1-3 DAYS
[] >3 DAYS
[] N DAYS

= =

70.21%

o_

¢?,

¢3
CPI

Figure 4-21. GRODY/GROSS Effort To Complete (Errors Only)--

Test

4-47
= _

5399

II

II

O.44%

0.88%

2.63%

25.00%

9,62%

8.65%

0.96%

71.05%

0.96%

79.81%

• <1 HR

II 1 HR-I DAY
l 1-3 DAYS

PR >3 DAYS
[] N DAYS

O

*r
A
U3

03
Lt)

• <I HR

[] I HR-I DAY

I-3DAYS

[] >3 DAYS

[] N DAYS

v

m

u

III

U

m

n

g

l

J

Figure 4-22. GRODY/GROSS Effort To Complete (Errors Only)--

Total Project

i

W

5399

4-48

mm

for the Ada system than for the FORTRAN system. Ninety-six

percent of the Ada errors were corrected in less than 1 day,

compared to 89 percent of the FORTRAN errors.

4.4 RECOMMENDATIONS

In general, management found that the point system was very

useful for evaluating progress on the Ada project, and they

would recommend its use in the future. One recommendation

is that units probably should not be considered to be of

different complexities (and have a different point value) if

specifications are developed during the actual design

phase. The coding and entry of specifications accounted for

most of the units classified type A and the team spent about

three months developing these after CDR. The team felt this

work should actually have occurred before CDR as part of the

design phase. A separate point scheme could be used to

evaluate the progress during the design phase while these

specifications are being developed.

Distributing the implementation work by allocating packages

to each programmer seemed to work well and is recommended

for future projects. Parallel code development was effec-

tive with this type of work distribution.

To avoid confusion in the future concerning the precise

function of a module, the design should specify the function

of modules down through the procedure level, and not just at

the package level. If this des{gn approach is not taken,

then extra time in the schedule should be allowed for meet-

ings to resolve the ambiguities, or an alternate method of

identifying the function of a procedure should be estab-

lished.

5399

4-49

I

•

W

i

4Hi

i

ID

anD

|

i

_a

SHim

n

v

J

SECTION 5 - SUMMARY AND RECOMMENDATIONS

This section summarizes some of the experience gained from

the GRODY project. It looks at design issues that became

evident during implementation, lessons learned in implemen-

tation, unit testing, and integration testing, and discusses

management lessons and observations. Finally, it makes rec-

ommendations for future Ada implementations.

5.1 DESIGN OBSERVATIONS AND RECOMMENDATIONS

i. The team felt that the design phase for an Ada de-

velopment project should include the implementation of the

PDL in compilable Ada and that it should also include the

completion of the specifications.

2. The design, documented using GOOD, was easy to un-

derstand and easy to translate into code. Some training in

object-oriented methodology was necessary for both develop-

ers and managers.

3. During design, functionality was designed as a part

of a package, resulting in some confusion concerning the

functions of the procedures within the packages. It is rec-

ommended that the explicit function of each procedure be

included in the design.

4. The representation of tasking in the design did not

sufficiently describe task interactions. The team felt that

the design should describe the location of "accepts" within

tasks and the error handling necessary for the tasks. A

detailed overview of the interaction of all tasks in a sys-

tem is recommended.

5. To avoid generating too many types, an abstract

type analysis could be incorporated into the design process.

5399

5-1

6. Exception-handling procedures shguld be specified

in the design and not left as an implementation feature.
This will ensure consistent exception handling throughout

the system and will ensure that appropriate actions are

taken to solve the problem causing an exception.

7. Operational efficiency should be considered during

design.

5.2 IMPLEMENTATION OBSERVATIONS AND RECOMMENDATIONS

I. The use of a style guide was very helpful in pro-

viding a uniform format for the code and guidance on use of

Ada features.

2. The compiler and the debugger were the two most

useful tools during the coding and unit testing of the Ada

project. All the tools used were considered helpful, but in

general they were considered immature and many desirable

tools were not available.

3. Generics were easy to implement and found to be an

effective method of reducing the amount of code necessary to

perform similar functions.

4. The feature of separating specifications and bodies

reduced the amount of necessary compilation and allowed

early definition of the system interfaces. This feature

also enabled the coding work to be distributed among the

team members more easily.

5. Proper use of the strong typing in Ada requires

some training. Careful planning should determine the number

of types to be included in a system.

6. Tasking was difficult to implement and test. It is

recommended that tasking be limited to only those problems

that really require its use.

I

U

J

i

m

J

J

i

1

M

m
m

5399

5-2

g

L

i

c

2

t

2

Fz
%...

L_

7. When portability is an implementation goal, the use

of Ada machine-dependent implementation features (such as

the hardware-dependent implementation of floating point num-

bers) should be avoided or isolated for future replacement.

8. Excessive use of nesting increases the amount of

compilation necessary and complicates unit testing. The use

of library units instead of nested units is recommended down

to the subsystem level and for any units that interact heav-

ily.

9. Care should be taken to minimize the size of global

type packages so that changes that occur in these packages

during implementation will not cause excessive recompila-

tions.

i0. The number of call-throughs should be minimized to

reduce amount of compilation necessary and to reduce the

total number of lines of source code.

ii. Potential reuse could probably be increased by

using fewer nested units and more library units and by

grouping mission-specific functions in packages separate

from the more general functions.

5.3 UNIT TESTING AND INTEGRATION OBSERVATIONS AND RECOMMEN-

DATIONS

i. Code reading is still beneficial for Ada, but it

needs a different emphasis. Types of errors found were

style errors, initialization errors, design/code incompat-

ibilities, and mathematical errors such as using a "less

than" sign instead of a "greater than" sign. Code reading

is also beneficial as a training tool.

2. Unit testing was unexpectedly difficult with Ada.

It is recommended that unit testing be conducted at the

package level instead of the procedure level.

5399

5-3

3. The developer needs to have a good understanding of

the ACS library structure to perform unit testing and inte-

gration effectively. The initial Ada training should in-

clude some Ada library structure training.

4. Ada's strong typing made testing more difficult by

increasing the complexity of the I/O, and because multiple

types resulted in larger amounts of code to be tested. How-

ever, the strong typing prevented many kinds of errors usu-

ally found in FORTRAN implementations.

5. Exception handlers must be coded carefully to

ensure that the specified corrective measure really does

correct the problem and not just postpone or avoid its de-

tection.

6. The number of stubs required for testing was a

problem. It is recommended that a library of specifications

be developed early in implementation to be kept in the con-

figuration library where they will be available for linking.

7. Recompilation speed was a problem during integra-

tion and testing. Most recompilation had to be done over-

night due to the speed of the compiler and the size of

GRODY. Good communication between the developers and the

configuration manager was necessary to inform the developers

of changes in the configuration library that would cause

them to recompile.

8. The debugger was considered an essential tool for

unit testing in Ada. It provided the only method for deter-

mining whatwas occurring in some of the nested units.

5.4 MANAGEMENT QB_ERVATION$ AND RECOMMENDATIONS

i. It requires more Ada code to produce the same func-

tionality provided by FORTRAN code. Based on this experi-

ence, the managers felt it was realistic to expect the Ada

product to be 2-1/2 times the size of the FORTRAN

5-4

5399

U

m

u

H

I

M

I

l

U

u

%.--

L

product. The Ada load module was over twice the size of the

comparable FORTRAN load module.

2. The point system used to evaluate progress during

the Ada project was useful.

3. Distribution of the implementation workload by al-

locating particular packages to each programmer worked

well. Parallel code development was effective with Ada.

4. There was more reworking of the Ada code than of

the FORTRAN code. Two possible reasons are the inexperience

of the Ada team and the lack of schedule pressure.

5. New skills are required in order to gain the bene-

fits that can be obtained from Ada features such as tasking

and exception handling. These skills do not seem to be

fully developed after training, but seem to require some

on-the-job training before the power of the new features is

realized.

6. The percentage of effort expended on implementation

during the whole life cycle is similar to the percentage of

effort normally expended in a FORTRAN implementation.

7. The change history and the growth history for the

Ada project produced smoother curves than the FORTRAN proj-

ect.

8. The change and the error rates per line of code

were similar for the FORTRAN and Ada projects. A much

higher percentage of both the errors and changes occurred in

an earlier phase of the Ada project (i.e., during implemen-

tation rather than during system testing).

9. The highest percentages of errors in both FORTRAN

and Ada were attributed to coding errors. In the Ada proj-

ect, a significant number of errors were attributed to de-

sign, which is not unexpected, since the Ada design was

5399

5-5

llW

completely new while the FORTRAN design was reused and

proven to be satisfactory. A significant number of errors

in the Ada project were also attributed to previous changes,

but this is probably due to inexperience with the language.

i0. Very similar classes of errors were found in the

two projects. The majority of errors in all classes were

discovered at an earlier phase in the Ada project than in

the FORTRAN project.

Many of the problems encountered during the implementation

of the GRODY project can be attributed to the newness of Ada

and the inexperience of the developers with the language.

Further study is needed to determine if the added cost of

development for Ada will decrease over time as experience

increases and will produce benefits in increased reusability

and decreased maintenance costs.

ll

1P

M

W

ll

U

l

lW

Im

1W

5399

5-6

ll

IB

ll

L

===

ACS

CDR

CMS

COSMIC

CPU

CSC

DEC

EDT

FDAS

GRO

GRODY

GROSS

GSFC

I/O

LSE

NASA

OBC

PDL

PDR

SEL

SLOC

GLOSSARY

Ada Compiiation System

critical design review

Configuration Management System

NASA Computer Software Management and Informa-

tion Center

central processing unit

Computer Sciences Corporation

Digital Equipment Company

VAX Digital Standard Editor

Flight Dynamics Analysis System

Gamma Ray Observatory

GRO Dynamics Simulator in Ada

GRO Dynamics Simulator in FORTRAN

Goddard Space Flight Center

input/output

language-sensitive editor

National Aeronautics and Space Administration

onboard computer

program design language

Preliminary Design Review

Software Engineering Laboratory

source lines of code

5399

G-I

i

W

u

i

I

i

uP

I

i

REFERENCES

1. A. Hoare, "The Emperor's New Clothes," Communications of

the ACM, February 1981

2. T. Courtwright, "Ada Tools Update," SIGAda Meeting,

Washington, D.C., September 18, 1985

3. W. Myers, "Ada: First Users--Pleased; Prospective

Users--Still Hesitant," Computer, March 1987

4. Goddard Space Flight Center, "An Experiment with Ada--

The GRO Dynamics Simulator Project Plan," F. McGarry and

R. Nelson, April 1985

5. Software Engineering Laboratory, SEL-84-001, Manaqer!s

Han4boQk for Software Development, W. Agresti,

F. McGarry, D. Card et al., April 1984

6. --, SEL-81-205, Recommended Approach to Software Dev_Iop-

men_, F. McGarry, G. Page, S. Eslinger et al., April 1983

7. Computer Sciences Corporation, PCA/IM-85/055(455), The

Ada Experiment--An Interim Report, W. Agresti, December

1985

8. R. C. Lingen, H. D. Mills, and B. I. Witt, Structured

Proqrammi_g Theory and Practice. Reading, MA:

Addison-Wesley Publishing Co., 1979

9. Ada User's Group, Goddard Space Flight Center, "Ada Style

Guide," September 1986

I0. Software Engineering Laboratory, SEL-85-002, Ada Traininq

Evaluation and Recommendations, R. Murphy and M. Stark,

October 1985

ii. Computer Sciences Corporation, Geostationary Operational

Environmental $_t_llite-I (GOES-I) Attitude Dynamics

Simulator in Ad_ (GQADA) Software Development Manaqement

Plan, PCA/IM-87/053, E. Booth et al., September 1987

12. Software Engineering Laboratory, SEL-87-004, Assessing

the Ada Desian Process and Its Implications: A Case

Study, S. Godfrey and C. Brophy, July 1987

5399
R-I

L

U

U

W

W

ml

=_

L_

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-0RIGINATED DOCUMENTS

SEL-76-001, pr0c_edinqs From the First Summer Software Enqi-

neerinq Workshop, August 1976

SEL-77-002, Proceedinqs From the Second Summer Software En-

gineering Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton

and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Desiqn Specifications Lanquages

_L_t_, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedin_ s From the Third Summer Software Enqi-

neerinq WorkshoR, September 1978

SEL-78-006, GSFC Software Engineerinq Research Requirements

Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL

Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Proqram

(SAP) User's Guide (Revision 3), w. J. Decker and

W. A. Taylor, July 1986

SEL-79-002, Th_ Software Engineering Laboratory: Relation-

ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository_R___H_ys_

Description and User's Guide, C. E. Goorevich, A. L. Green,

and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-

gram Desiqn Language (PDL) in the Goddard Space Fliqht Cen-

ter (GSFC) Code 580 software Desiqn Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

5399

B-I

I

SEL-79-005, Proceedings From the Fourth Summer Software En-

gineering Workshop, November 1979

SEL-80-002, Multi-Level Expression Design Language-

Requirement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support

Software System (MMS/GSSS) State-of-the-Art Computer Systems/

Compatibility Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engi-

neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-

tion Models for Software Systems, J. F. Cook and

F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)

User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Enqineerinq Laboratory Proqrammer Work-

b_nch phase 1 Ev_l_ation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluatinq Software Development by Analysis of
Chanqe Data, D. M. Weiss, November 1981

SEL-81-012, The R_yleiqh Curve as a Model for Effort Distri-

bution Over the Dife of Medium Scale Software Systems, G. O.

Picasso, December 1981

SEL-81-013, Proceedinqs From the Sixth Annual Software Enqi-

neerinq Workshop, December 1981

SEL-81-014, Automated Collection of Software EngineerinQ

Data in th_ Software Enqineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et a l., August 1982

SEL-81-104, _h_ Softw%re Enqineering Laboratory, D. N. Card,

F. E. McGarry, G. Page, et al., February 1982

W

i

mm

J

W

mm

f

g

U

U

W

w

5399

B-2

w

w

SEL-81-i07, Software Enqine_ring Laborat0ry_(SEL) Compendium

0_ Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-110, Eval_ation of an Independent Verification and

Validation (IV&V) Methodoloay _or Fliqht Dgnamics, G. Page,

F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, Recommended Approach to Software Developm@nt,

F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, EvalDation of Management Measures of Software

Development, G. Page, D. N. Card, and F. E. McGarry,

September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineerinq Papers:

ume i, July 1982

VO I-

SEL-82-007, Proceedinqs From the Seventh Ann_al Software

En_ineerinQ Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of

Changes: The Data From the Softwar@ Enqineerinq Laboratory,

V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer proqram

(SAP) System Description (Revision i), W. A. Taylor and

W. J. Decker, April 1985

SEL-82-I05, Glossary of Software Enqineerinq Laboratory

Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-706, Annotated Bibliography of Software Engineering

Laboratory Literature, G. Heller, January 1989

SEL-83-001, An Approach to Software Cost Estimation,

F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,

D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers:

ume II, November 1983

Vo I-

SEL-83-006, Monitor_na Software Development Throuqh Dynamic

Variables, C. w. Doerflinger, November 1983

SEL-83-007, Proceedinqs F_om the Eiqhth Annual Software En-

gineering Workshop, November 1983

5399

B-3

SEL-84-001, Manager's Handbook for Softwar_ Dev_loDment,

W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-003, Investigation of Sp@¢ification Measures for the

Softwar_ Enuineerinq Laboratory <SEL), W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, P[Qceedinqs From th_ Ninth Annual Software Enqi-

neering Workshop, November 1984

SEL-85-001, A ComParison of Software Verification Tech-

n_igues, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,

April 1985

SEL-85-002, Ad_ Training Evaluation and Recommendations From

the Gamma R_y 0bservatorv Ada Development Team, R. Murphy

and M. Stark, October 1985

SEL-85-003, Collected Software Enaineering Papers:

ume III, November 1985

VO!-

SEL-85-004, Evaluations of Software Technoloqies[Testinq,

CLEANROOMo and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Softwar@ V@rification an4 T@$tinq, D. N. Card,

C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedinqs From the Tenth Ann_al Software Enqi-

neerinq Workshop, December 1985

SEL-86-001, proqrammer's Handbook for Fliqht Dynamics Soft-

ware Developm@nt, R. Wood and E. Edwards, March 1986

SEL-86-002, G@n_ral 0biect-Oriented Software Development,
E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System S0ftw_r@ D_velopm_nt En-

v__ronment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers:

ume IV, November 1986

VOI-

SEL-86-005, Measurinq Software Design, D. N. Card, October
1986

SEL-86-006, Proceedinqs From the El_venth Ann_al Software

Enqineerinq Workshop, December 1986

SEL-87-001, Produ¢_ ASSur%nce Poli¢i_$ and Proced_r@$ for

Y_!_ht Dynamics Software Development, S. Perry et al., March
1987

w

M

mm

g

mm

i

W

U

u

mm

mm

g

w

W

5399

B-4

J

=

SEL-87-002, Ada Style Guide (Version I,i), E. Seidewitz

et al., May 1987

SEL-87-003, Guidelines for ADDlvinq the Composite Specifica-

tion Model (CSM), W. W. Agresti, June 1987

SEL-87-004, Assessina the Ada Design Process and Its Impli-
cations: A Case Study, S. Godfrey, C. Brophy, et al.,

July 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL

Database, G. Heller, October 1987

SEL-87-009, Collected Software Enqineerinq Papers:

S. DeLong, November 1987

Volume V,

SEL-87-010, Proceedinus From the Twelfth Annual Software En-

qineerina Workshop, December 1987

SEL-88-001, System Testinq of a Production Ada Project:

GRQDY Study, J. Seigle and Y. Shi, November 1988

The

SEL-88-002, C011ected Software Enqin_erinq Papers:

um@ VI, November 1988

VOI-

SEL-88-003, Evolution of Ada Technoloqy in the Fliaht Dynam-

ics Area: Desiqn Phase Analysis, K. Quimby and L. Esker,

December 1988

SEL-89-001, Software Enaineerinq Laboratory (SEL) Database

Orqa_i_tion and User's Guide, M. So, G. Heller,

S. Steinberg, and D. Spiegel, May 1989

SEL-89-002, Implementation Of a Production Ada Project:

GRQDY Study, S. Godfrey and C. Brophy, September 1989

The

SEL-RELATED LITERATURE

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,

"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedinqs of the First International Sympq_ium on Ada for

th$ NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-

uring Software Technology," Proqram Transformation and Pro-

qr_mminq Environments. New York: Springer-Verlag, 1984

IBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expenditures," Proceedinqs of the

Fifth International Conference on Software Enqineerinq.

New York: IEEE Computer Society Press, 1981

5399

B-5

w

IBasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering," ASME Advances in Computer Technoloqy,

January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software

Ma_qement and Enqineerinq. New York: IEEE Computer Society

Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Sof£ware Meth-

odology," proceedinqs of th_ First P_n-Pacific Computer Con-

ference, September 1985

iBasili, V. R., and J. Beane, "Can the Parr Curve Help

With Manpower Distribution and Resource Estimation Prob-

lems?," Journal of Systems and Software, February 1981,

vol. 2, no. 1

iBasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-

ships Between Effort and Other Variables in the SEL,"
proceedinQs of the International Computer Software and Ap-

plications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Pr@_iction

_nd R_liability Assessment in the SEL Environment, University

of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and

Complexity: An Empirical Investigation," ¢0mmunications of

the ACM, January 1984, vol. 27, no. 1

iBasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"

Proceedinas of the ACM _IGMETRICS Symposium/Workshop: Qual-

ity Metrics, March 1981

Basili, V. R,, and J. Ramsey, Structur_l Coveraq_ of Func-

tional Testinq, University of Maryland, Technical Report

TR-1442, September 1984

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-

type Expert System for Software Engineering Management,"

Proceedinas of the IEEE_MITRE Expert Systems in Government

Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development," Proceedinqs Qf the Workshop

on Quantitative Software Models for ReliabilitY, Complexity,

9_D_. New York: IEEE Computer Society Press, 1979

5399

B-6

mmm

I

I

l

J

m

W

m

l

5Basili, V. and H. D. Rombach, "Tailoring the Software

Process to Project Goals and Environments," Proceedinqs of

_he 9_h International ¢0nf_rence on Software Enqineerinq,

March 1987

5Basili, V. and H. D. Rombach, "T A M E: Tailoring an Ada

Measurement Environment," Proceedinas of the Joint Ada Con-

ference, March 1987

5Basili, V. and H. D. Rombach, "T A M E: Integrating Meas-

urement Into Software Environments," University of Maryland,

Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project:

Towards Improvement-Oriented Software Environments," IEEE

Transactions on Software Enqineerinq, June 1988

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-

ysis and Data Validation Across FORTRAN Projects," IEEE

Transactions on Software Enqineerinq, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use

of an Environments's Characteristic Software Metric Set,"

Proceedinq$ of th@ Eighth Int@rnational Conference on Soft-

ware Enqin_er_nq. New York: IEEE Computer Society Press,

1985

Basili, V. R., and R. W. Selby, Jr., ComDarinq t_e Effective-

ness of Software Testinq Strateaies, University of Maryland,

Technical Report TR-1501, May 1985

3Basili, V. R. and R. W. Selby "Four Applications of a

Software Data Collection and Analysis Methodology," Proceed-

inqs of the NAT0 Advanced Study Institute, August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-

perimentation in Software Engineering," IEEE Transactions on

Software Enqineerina, July 1986

5Basili, V. and R. Selby, "Comparing the Effectiveness of

Software Testing Strategies," IEEE Transactions on Software

Enqineerina, December 1987

2Basili, V. R., and D. M. Weiss, A Methodoloqv for Col!ectinq

valid Software Enqineerinq Data, University of Maryland,

Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-

ing Valid Software Engineering Data," IEEE Transactions on

Software Enqineer_inq, November 1984

5399

B-7

J

iBasili, V. R., and M. V. Zelkowitz, "The Software Engi-

neering Laboratory: Objectives," Proceedings of the Fif-

teenth Annual conference on Computer Personnel Research,

August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software

Measurement Experiment," Proceedinqs of the Software Life

Cycle Manaqement Workshop, September 1977

iBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-

ware Engineering Laboratory," Proceedinqs of th@ Second Soft-

ware Life Cycle Manaqement Workshop, August 1978

iBasili, V. R., and M. V. Zelkowitz, "Measuring Software

Development Characteristics in the Local Environment," Com-

Puters _nd Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale

Software Development," Proceedings of the Third Interna-

_i0_al Conference on Softwar_ EnQineerinq. New York: IEEE

Computer Society Press, 1978

5Brophy, C., W. Agresti, and V. Basili, "Lessons Learned

in Use of Ada-Oriented Design Methods," Proceedinqs of the

Join_ Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Hasili,

"Lessons Learned in the Implementation Phase of a Large Ada

Project," Proceedinq$ of the Washinqt0n Ada Technical Con-

ference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and

Program Size," Computer Sciences Corporation, Technical Memo-

randum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques

for Resource Estimation," Computer Sciences Corporation,

Technical Memorandum, November 1982

3card, D. N., "A Software Technology Evaluation Program,"

Annals do XVIII Conqresso Nacional de Informatica, October

1985

5Card, D. and W. Agresti, "Resolving the Software Science

Anomaly," The Journal o__ Systems and Software, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design

Complexity," The Journal of Systems 9nd Software, June 1988

m

J

J

w

w

u
J

m

I

I

W

l

5399

B-8

W

I

w

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan,

"A Software Engineering View of Flight Dynamics Analysis

System," Parts I and II, Computer Sciences Corporation,

Technical Memorandum, February 1984

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empiri-

cal Study of Software Design Practices," IEEE Transactions

on Softwar_ Enqineerinq, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteris-

tics of FORTRAN Modules," Computer Sciences Corporation,

Technical Memorandum, June 1984

5Card, D., F. McGarry, and G. Page, "Evaluating Software

Engineering Technologies," IEEE Transaction_ on Software

!gJul/_, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for

Software Modularization," Proceedings of the Eiqhth Interna-

_i0nal Conference on Software Enqineerinq. New York: IEEE

Computer Society Press, 1985

iChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis

To Evaluate Software Engineering Methodologies," Proceedinqs

of the Fifth International Conference on Softwar@ Enqin@er-

incl. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and

Q. L. Jordan, "An Approach for Assessing Software Proto-

types," ACM Software Enqineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software

Development Through Dynamic Variables," Proceedings of the

Seventh International Computer Software and Applications

nf_. New York: IEEE Computer Society Press, 1983

5Doubleday, D., "ASAP: An Ada Static Source Code Analyzer

Program," University of Maryland, Technical Report TR-1895,

August 1987 (NOTE: i00 pages long)

6Godfrey, S. and C. Brophy, "Experiences ih the Implementa-

tion of a Large Ada Project," Proceedinqs of the 1988

Washinqton Ada SYmposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for

NAVpAK, Higher Order Software, Inc., TR-9, September 1977

(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, "Characterizing Resource

Data: A Model for Logical Association of Software Data,"

University of Maryland, Technical Report TR-1848, May 1987

5399

B-9

6jeffery, D. R., and V. R. Basili, "Validating the TAME

Resource Data Model," Proceedings of the Tenth International

Conference on Software Enaineering, April 1988

5Mark, L. and H. D. Rombach, "A Meta Information Base for

Software Engineering," University of Maryland, Technical

Report TR-1765, July 1987

6Mark, L. and H. D. Rombach, "Generating Customized Soft-

ware Engineering Information Bases From Software Process and

Product Specifications," Proceedinq$ of the 22nd Annual

Hawai_ Internati0n_l.Conference on _ystem Sciences, January
1989

5McGarry, F. and W. Agresti, "Measuring Ada for Software

Development in the Software Engineering Laboratory (SEL),"
Proceedinqs of the 21st Annua_ Hawai_ In_ernationa! Con-

ference on System Sciences, January 1988

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the

Impact of Computer Resource Quality on the Software Develop-
ment Process and Product," Proceed inqs of _he Hawaiian Inter-

national Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA

Software Research TechnoloQy Workshop (Proceedings), March
1980

3page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-

perience With Independent Verification and Validation,"

Proceedinas of the Eiqhth International Computer Software

and Applications Conference, November 1984

5Ramsey, C. and V. R. Basili, "An Evaluation of Expert Sys-

tems for Software Engineering Management," University of

Maryland, Technical Report TR-1708, September 1986

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process

Using Structural Coverage," _roceedi_gs of the Eiqhth _nter-

nationa! Conference on Software Enaineerina. New York:

IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of

Software Structure on Maintainability," IEEE Transactions on

Software Enqine_ring, March 1987

6Rombach, H. D., and V. R. Basi}i, "Quantitative Assessment

of Maintenance: An Industrial Case Study," Procee_inqs From

the Conference on Software Maintenance, September 1987

5399

B-10

w

I

J

R

m

m

i

l

m

D

m

t

t

R

6Rombach, H. D., and L. Mark, "Software Process and Prod-

uct Specifications: A Basis for Generating Customized SE
Information Bases," PrQceedinqs of the 22nd Annual Hawaii

International Conference on System Sciences, January 1989

5Seidewitz, E., "General Object-Oriented Software Develop-

ment: Background and Experience," Proceedinqs of the 21st

Hawaii InterDational Conference on System Sciences, January
1988

6Seidewitz, E., "General Object-Oriented Software Develop-

ment with Ada: A Life Cycle Approach," Proceedinqs of the
CASE Technoloqy Conference, April 1988

6Seidewitz, E., "Object-Oriented Programming in Smalltalk

and Ada," Proceedinqs of the 1987 Conference on Qbject-

Oriented Proqramminq Systems. Languaqes, and Applications,
October 1987

4Seidewitz, E., and M. Stark, "Towards a General Object-

Oriented Software Development Methodology," Proceedinqs of

the First International Symposium on Ada for the NASA Space

Station, June 1986

Stark, M., and E. Seidewitz, "Towards a General Object-

Oriented Ada Lifecycle," Proceedinqs of the Joint Ada Con-
ference, March 1987

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL

Software DeveloPment Data, Data and Analysis Center for

Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SE_ Data Compen-

dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

5Valett, J. and F. McGarry, "A Summary of Software Measure-

ment Experiences in the Software Engineering Laboratory,"
Proceedinqs of the 21st Annual Hawaii International Confer-

ence on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-

velopment by Analysis of Changes: Some Data From the Soft-

ware Engineering Laboratory," IE_E Transactions on Software

Enqineerinq, February 1985

5Wu, L., V. Basili, and K. Reed, "A Structure Coverage Tool

for Ada Software Systems," Proceedinas of the Joint Ada COn-
ference, March 1987

5399
B-II

iZelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedinas of the Twelfth Conference on

the Interface of Statistics and Computer Science. New York:

IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-

perimental Computer Science Research," Empirical Foundations

for Computer and Informati0n Science (proceedings),

November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Proto-

typing: A Case Study," Proceedinas of the 26£h Annu_l Tech-

nical Symposium of the Washinqton, D. C., Chapter of the ACM,

June 1987

6Zelkowitz, M. V., "Resource Utilization During Software

Development," Journ_ of Systems and Software, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," Proceedinas of the Soft-

ware L_f_ Cycle M_nagement Workshop, September 1977

NOTES:

iThis article also appears in SEL-82-004, Collected Soft-

ware EDaineer_nq Papers: Volume I, July 1982.

2This article also appears in SEL-83-003, Collected Soft-

ware Enqineerinq Papers: Volum@ II, November 1983.

3This article also appears in SEL-85-003, Collected Soft-

ware Enqine_rinq Paperz: Volum_ III, November 1985.

4This article also appears in SEL-86-004, Collected Soft-

ware Enqineering Papers: Volum@ IV, November 1986.

5This article also appears in SEL-87-009, Collected Soft-

ware Enqineerinu PaPers: Volume V, November 1987.

6This article also appears in SEL-88-002, Collected Soft-

ware Enqineerinq PaDe[s: Volum@ VI, November 1988.

m

u

l

m

mm

I

i

I

_m

i

5399

B-12

mm

m

